Scalable Route to Colloidal NixCo3–xS4 Nanoparticles with Low Dispersity Using Amino Acids

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Talisi E. Meyer, Kevin Zhijian Jiang, Ching Chun Peng, Quynh P. Sam, Minsoo Kang, Reilly P. Lynch, Jonathan L. Rowell, Judy Cha and Richard D. Robinson*, 
{"title":"Scalable Route to Colloidal NixCo3–xS4 Nanoparticles with Low Dispersity Using Amino Acids","authors":"Talisi E. Meyer,&nbsp;Kevin Zhijian Jiang,&nbsp;Ching Chun Peng,&nbsp;Quynh P. Sam,&nbsp;Minsoo Kang,&nbsp;Reilly P. Lynch,&nbsp;Jonathan L. Rowell,&nbsp;Judy Cha and Richard D. Robinson*,&nbsp;","doi":"10.1021/acsmaterialsau.3c00016","DOIUrl":null,"url":null,"abstract":"<p >The thiospinel group of nickel cobalt sulfides (Ni<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>S<sub>4</sub>) are promising materials for energy applications such as supercapacitors, fuel cells, and solar cells. Solution-processible nanoparticles of Ni<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>S<sub>4</sub> have advantages of low cost and fabrication of high-performance energy devices due to their high surface-to-volume ratio, which increases the electrochemically active surface area and shortens the ionic diffusion path. The current approaches to synthesize Ni<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>S<sub>4</sub> nanoparticles are often based on hydrothermal or solvothermal methods that are difficult to scale up safely and efficiently and that preclude monitoring the reaction through aliquots, making optimization of size and dispersity challenging, typically resulting in aggregated nanoparticles with polydisperse sizes. In this work, we report a scalable “heat-up” method to colloidally synthesize Ni<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>S<sub>4</sub> nanoparticles that are smaller than 15 nm in diameter with less than 15% in size dispersion, using two inexpensive, earth-abundant sulfur sources. Our method provides a reliable synthetic pathway to produce phase-pure, low-dispersity, gram-scale nanoparticles of ternary metal sulfides. This method enhances the current capabilities of Ni<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>S<sub>4</sub> nanoparticles to meet the performance demands to improve renewable energy technologies.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"3 5","pages":"501–513"},"PeriodicalIF":5.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thiospinel group of nickel cobalt sulfides (NixCo3–xS4) are promising materials for energy applications such as supercapacitors, fuel cells, and solar cells. Solution-processible nanoparticles of NixCo3–xS4 have advantages of low cost and fabrication of high-performance energy devices due to their high surface-to-volume ratio, which increases the electrochemically active surface area and shortens the ionic diffusion path. The current approaches to synthesize NixCo3–xS4 nanoparticles are often based on hydrothermal or solvothermal methods that are difficult to scale up safely and efficiently and that preclude monitoring the reaction through aliquots, making optimization of size and dispersity challenging, typically resulting in aggregated nanoparticles with polydisperse sizes. In this work, we report a scalable “heat-up” method to colloidally synthesize NixCo3–xS4 nanoparticles that are smaller than 15 nm in diameter with less than 15% in size dispersion, using two inexpensive, earth-abundant sulfur sources. Our method provides a reliable synthetic pathway to produce phase-pure, low-dispersity, gram-scale nanoparticles of ternary metal sulfides. This method enhances the current capabilities of NixCo3–xS4 nanoparticles to meet the performance demands to improve renewable energy technologies.

Abstract Image

利用氨基酸制备低分散性胶体NixCo3–xS4纳米粒子的可扩展途径
硫尖晶石族的镍钴硫化物(NixCo3-xS4)在超级电容器、燃料电池和太阳能电池等能源应用方面是很有前途的材料。溶液可加工纳米NixCo3-xS4具有高的表面体积比,增加了电化学活性表面积,缩短了离子扩散路径,具有低成本和制造高性能能量器件的优点。目前合成NixCo3-xS4纳米颗粒的方法通常是基于水热或溶剂热方法,这些方法难以安全有效地扩大规模,并且无法通过等分液监测反应,使得尺寸和分散性的优化具有挑战性,通常会导致聚集的纳米颗粒具有多分散尺寸。在这项工作中,我们报告了一种可扩展的“加热”方法,以胶体方式合成NixCo3-xS4纳米颗粒,该纳米颗粒直径小于15 nm,分散尺寸小于15%,使用两种廉价的,地球上丰富的硫源。我们的方法为制备相纯、低分散、克级的三元金属硫化物纳米颗粒提供了可靠的合成途径。该方法增强了NixCo3-xS4纳米颗粒的现有能力,以满足改进可再生能源技术的性能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信