Hakim Saibi, Mohamed Amrouche, Joseph Batir, Amir Gabr, Abdel-Rahman Fowler
{"title":"Magnetic and gravity modeling and subsurface structure of two geothermal fields in the UAE","authors":"Hakim Saibi, Mohamed Amrouche, Joseph Batir, Amir Gabr, Abdel-Rahman Fowler","doi":"10.1186/s40517-022-00240-4","DOIUrl":null,"url":null,"abstract":"<div><p>There are two low-enthalpy geothermal systems along the eastern border of the United Arab Emirates: Ain Khatt (Khatt City, Ras Al Khaimah Emirate) and Green Mubazzarah–Ain Faidha (GMAF) (Al-Ain City, Abu Dhabi Emirate). The hot springs are likely to be meteoric waters fed through deep-seated faults that intersect the geothermal reservoirs at 2.6–3.8 km depth. Gravity and magnetic data were analyzed by gradient (horizontal derivative “HD”, and improved normalized horizontal tilt angle “INH”), and separately 3D modeled to image the subsurface structure of the two UAE geothermal systems. Bouguer anomalies in GMAF and Ain Khatt range from − 14.2 to 8.09 mGal and − 169.3 to − 122.2 mGal, respectively. Magnetic intensities in GMAF and Ain Khatt vary from 39,327 to 44,718 nT and 43,650 to 44,653 nT, respectively. The UAE hot springs (GMAF and Ain Khatt) are located in mainly high HD and INH regions, which reflect significant discontinuities in the basement rock, such as faults or lithological contacts. A joint inversion of magnetic and gravity data, through Artificial Neural Network (ANN) modeling, was performed to explore and interpret the 3D density and magnetic susceptibility variations. Results show that the hot springs in both geothermal systems are associated with intersecting geological contacts and fault zones. The Green-Mubazzarah–Ain Faidha hot springs may be connected at depth.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00240-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00240-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
There are two low-enthalpy geothermal systems along the eastern border of the United Arab Emirates: Ain Khatt (Khatt City, Ras Al Khaimah Emirate) and Green Mubazzarah–Ain Faidha (GMAF) (Al-Ain City, Abu Dhabi Emirate). The hot springs are likely to be meteoric waters fed through deep-seated faults that intersect the geothermal reservoirs at 2.6–3.8 km depth. Gravity and magnetic data were analyzed by gradient (horizontal derivative “HD”, and improved normalized horizontal tilt angle “INH”), and separately 3D modeled to image the subsurface structure of the two UAE geothermal systems. Bouguer anomalies in GMAF and Ain Khatt range from − 14.2 to 8.09 mGal and − 169.3 to − 122.2 mGal, respectively. Magnetic intensities in GMAF and Ain Khatt vary from 39,327 to 44,718 nT and 43,650 to 44,653 nT, respectively. The UAE hot springs (GMAF and Ain Khatt) are located in mainly high HD and INH regions, which reflect significant discontinuities in the basement rock, such as faults or lithological contacts. A joint inversion of magnetic and gravity data, through Artificial Neural Network (ANN) modeling, was performed to explore and interpret the 3D density and magnetic susceptibility variations. Results show that the hot springs in both geothermal systems are associated with intersecting geological contacts and fault zones. The Green-Mubazzarah–Ain Faidha hot springs may be connected at depth.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.