A Study of an Iteratively-Regularized Simplified Landweber Iteration for Nonlinear Inverse Problems in Hilbert Spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. K. Dixit
{"title":"A Study of an Iteratively-Regularized Simplified Landweber Iteration for Nonlinear Inverse Problems in Hilbert Spaces","authors":"S. K. Dixit","doi":"10.1080/01630563.2023.2183510","DOIUrl":null,"url":null,"abstract":"Abstract Lanweber-type methods are a well-known regularization methods to solve linear and nonlinear ill-posed problems. In this article, we consider a simplified form of Landweber method, say, an iteratively-regularized simplified Landweber iteration for solving nonlinear ill-posed problems. We study a detailed convergence analysis of the method under standard conditions on the nonlinearity and the rate of convergence under a Hölder-type source condition. Finally, numerical simulations are performed to validate the performance of the method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2183510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Lanweber-type methods are a well-known regularization methods to solve linear and nonlinear ill-posed problems. In this article, we consider a simplified form of Landweber method, say, an iteratively-regularized simplified Landweber iteration for solving nonlinear ill-posed problems. We study a detailed convergence analysis of the method under standard conditions on the nonlinearity and the rate of convergence under a Hölder-type source condition. Finally, numerical simulations are performed to validate the performance of the method.
Hilbert空间中非线性逆问题的迭代正则化简化Landweber迭代研究
摘要Lanweber型方法是求解线性和非线性不适定问题的一种著名的正则化方法。在本文中,我们考虑了Landweber方法的一种简化形式,即求解非线性不适定问题的迭代正则化简化Landweber迭代。我们研究了该方法在标准条件下的非线性收敛性分析以及在Hölder型源条件下的收敛速度。最后,通过数值模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信