A generative adversarial network–based unified model integrating bias correction and downscaling for global SST

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Shijin Yuan, Xin Feng, Bin Mu, Bo Qin, Xin Wang, Yuxuan Chen
{"title":"A generative adversarial network–based unified model integrating bias correction and downscaling for global SST","authors":"Shijin Yuan,&nbsp;Xin Feng,&nbsp;Bin Mu,&nbsp;Bo Qin,&nbsp;Xin Wang,&nbsp;Yuxuan Chen","doi":"10.1016/j.aosl.2023.100407","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a global sea surface temperature (SST) bias correction and downscaling unifying model based on the generative adversarial network. The generator of the model uses a bias correction module to correct the numerical model forecasting results. Then it uses a reusable shared downscaling module to improve the resolution of the corrected data gradually. The discriminator of the model evaluates the quality of the bias correction and downscaling results as a criterion for adversarial training. And a physics-informed dynamics penalty term is included in the adversarial loss function to improve the performance of the model. Based on the 1°-resolution SST forecasting results of the GFDL SPEAR (Seamless System for Prediction and Earth System Research) model, the authors select the Remote Sensing System observations as the refined targets and carry out validation experiments for three typical events at different scales and regions (ENSO, Indian Ocean dipole, and oceanic heatwave events). The model reduces the forecasting error by about 90.3% while increasing the resolution to 0.0625°×0.0625°, breaking the limitation of the resolution of the observation data, and the structural similarity with the observation results is as high as 96.46%.</p><p>摘要</p><p>本文提出了一种基于生成对抗网络的全球海表面温度(sea surface temperature, SST)偏差订正及降尺度整合模型. 该模型的生成器使用偏差订正模块将数值模式预测结果进行校正, 再用可复用的共享降尺度模块将订正后的数据分辨率逐次提高. 该模型的判别器可鉴别偏差订正及降尺度结果的质量, 以此为标准进行对抗训练. 同时, 在对抗损失函数中含有物理引导的动力学惩罚项以提高模型的性能. 本研究基于分辨率为1°的GFDL SPEAR模式的SST预测结果, 选择遥感系统(Remote Sensing System)的观测资料作为真值, 面向月尺度ENSO与IOD事件以及天尺度海洋热浪事件开展了验证试验: 模型在将分辨率提高到0.0625°×0.0625°的同时将预测误差减少约90.3%, 突破了观测数据分辨率的限制, 且与观测结果的结构相似性高达96.46%.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 1","pages":"Article 100407"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283423000934/pdfft?md5=10497f0d5bbfb7bbd5824af1f6b97326&pid=1-s2.0-S1674283423000934-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000934","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a global sea surface temperature (SST) bias correction and downscaling unifying model based on the generative adversarial network. The generator of the model uses a bias correction module to correct the numerical model forecasting results. Then it uses a reusable shared downscaling module to improve the resolution of the corrected data gradually. The discriminator of the model evaluates the quality of the bias correction and downscaling results as a criterion for adversarial training. And a physics-informed dynamics penalty term is included in the adversarial loss function to improve the performance of the model. Based on the 1°-resolution SST forecasting results of the GFDL SPEAR (Seamless System for Prediction and Earth System Research) model, the authors select the Remote Sensing System observations as the refined targets and carry out validation experiments for three typical events at different scales and regions (ENSO, Indian Ocean dipole, and oceanic heatwave events). The model reduces the forecasting error by about 90.3% while increasing the resolution to 0.0625°×0.0625°, breaking the limitation of the resolution of the observation data, and the structural similarity with the observation results is as high as 96.46%.

摘要

本文提出了一种基于生成对抗网络的全球海表面温度(sea surface temperature, SST)偏差订正及降尺度整合模型. 该模型的生成器使用偏差订正模块将数值模式预测结果进行校正, 再用可复用的共享降尺度模块将订正后的数据分辨率逐次提高. 该模型的判别器可鉴别偏差订正及降尺度结果的质量, 以此为标准进行对抗训练. 同时, 在对抗损失函数中含有物理引导的动力学惩罚项以提高模型的性能. 本研究基于分辨率为1°的GFDL SPEAR模式的SST预测结果, 选择遥感系统(Remote Sensing System)的观测资料作为真值, 面向月尺度ENSO与IOD事件以及天尺度海洋热浪事件开展了验证试验: 模型在将分辨率提高到0.0625°×0.0625°的同时将预测误差减少约90.3%, 突破了观测数据分辨率的限制, 且与观测结果的结构相似性高达96.46%.

Abstract Image

一个基于生成对抗性网络的统一模型,集成了全球SST的偏差校正和降尺度
本文提出了一种基于生成式对抗网络的全球海面温度(SST)纠偏和降尺度统一模式。该模型的生成器使用偏差校正模块来校正数值模式的预报结果。然后,它使用一个可重复使用的共享降尺度模块,逐步提高修正后数据的分辨率。模型的判别器评估纠偏和降尺度结果的质量,作为对抗训练的标准。在对抗损失函数中加入了物理信息动力学惩罚项,以提高模型的性能。基于 GFDL SPEAR(无缝预报和地球系统研究系统)模式的 1° 分辨率 SST 预报结果,作者选择遥感系统观测数据作为精细化目标,并对不同尺度和区域的三个典型事件(厄尔尼诺/南方涛动、印度洋偶极子和海洋热浪事件)进行了验证实验。模型在分辨率提高到 0.0625°×0.0625°的同时,预报误差降低了约 90.3%,突破了观测数据分辨率的限制,与观测结果的结构相似度高达 96.46%.本文摘要提出了一种基于生成对抗网络的全球海表面温度(sea surface temperature, SST)偏差订正及降尺度整合模型。该模型的生成器使用偏差订正模块将数值模式预测结果进行校正,再用可复用的共享降尺度模块将订正后的数据分辨率逐次提高。该模型的判别器可鉴别偏差订正及降尺度结果的质量, 以此为标准进行对抗训练。同时,在对抗损失函数中含有物理引导的动力学惩罚项以提高该模型的性能。本研究基于分辨率为1°的GFDL SPEAR模式的SST预测结果, 选择遥感系统(Remote Sensing System)的观测资料作为真值, 面向月尺度ENSO与IOD事件以及天尺度海洋热浪事件开展了验证试验: 模型在将分辨率提高到0.0625°×0.0625°的同时将预测误差减少约90.3%, 突破了观测数据分辨率的限制, 且与观测结果的结构相似性高达96.46%.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信