{"title":"Adaptiveness of the empirical distribution of residuals in semi-parametric conditional location scale models","authors":"C. Francq, J. Zakoian","doi":"10.3150/21-bej1357","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of deriving the asymptotic distribution of the empirical distribution function F n of the residuals in a general class of time series models, including conditional mean and conditional heteroscedaticity, whose independent and identically distributed errors have unknown distribution F. We show that, for a large class of time series models (including the standard ARMA-GARCH), the asymptotic distribution of √ n{ F n (·) − F (·)} is impacted by the estimation but does not depend on the model parameters. It is thus neither asymptotically estimation free, as is the case for purely linear models, nor asymptotically model dependent, as is the case for some nonlinear models. The asymptotic stochastic equicontinuity is also established. We consider an application to the estimation of the conditional Value-at-Risk.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1357","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
This paper addresses the problem of deriving the asymptotic distribution of the empirical distribution function F n of the residuals in a general class of time series models, including conditional mean and conditional heteroscedaticity, whose independent and identically distributed errors have unknown distribution F. We show that, for a large class of time series models (including the standard ARMA-GARCH), the asymptotic distribution of √ n{ F n (·) − F (·)} is impacted by the estimation but does not depend on the model parameters. It is thus neither asymptotically estimation free, as is the case for purely linear models, nor asymptotically model dependent, as is the case for some nonlinear models. The asymptotic stochastic equicontinuity is also established. We consider an application to the estimation of the conditional Value-at-Risk.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.