Fuzzy optimisation model of an incremental capacity auction formulation with greenhouse gas consideration

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2023-02-27 DOI:10.1049/stg2.12065
Karanveer Bhachu, Ayman Elkasrawy, Bala Venkatesh
{"title":"Fuzzy optimisation model of an incremental capacity auction formulation with greenhouse gas consideration","authors":"Karanveer Bhachu,&nbsp;Ayman Elkasrawy,&nbsp;Bala Venkatesh","doi":"10.1049/stg2.12065","DOIUrl":null,"url":null,"abstract":"<p>An incremental capacity auction (ICA) is a mechanism to procure future generation capacity in a power system. Greenhouse gas (GHG) emissions from generators negatively affect our climate and there is a real need to reduce them. Thus, it is critically important for ICA models to procure future generation capacity that reduces GHG emissions. In this paper, we propose two ICA models incorporating energy-limited generation (renewables and storage) and a GHG emission constraint. All offers are converted into unforced capacity, negating any effect of energy limitations of generation offers. The first ICA model uses classical optimisation and considers GHG emission limits and maximises social welfare (SW). The second ICA model uses a fuzzy optimisation technique to simultaneously optimise the objectives of SW maximisation and GHG emission minimisation. Both ICA models are tested on two datasets with 10 and 338 capacity supply offers constructed using Ontario data. While both models control GHG emissions as desired, the ICA model with fuzzy optimisation is shown to find a better balance between maximising net SW and minimising GHG emissions, with superior reductions in GHG for minor decreases in SW. Results demonstrate how GHG emission reduction results in increased selection of low carbon generation.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"6 2","pages":"124-135"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

An incremental capacity auction (ICA) is a mechanism to procure future generation capacity in a power system. Greenhouse gas (GHG) emissions from generators negatively affect our climate and there is a real need to reduce them. Thus, it is critically important for ICA models to procure future generation capacity that reduces GHG emissions. In this paper, we propose two ICA models incorporating energy-limited generation (renewables and storage) and a GHG emission constraint. All offers are converted into unforced capacity, negating any effect of energy limitations of generation offers. The first ICA model uses classical optimisation and considers GHG emission limits and maximises social welfare (SW). The second ICA model uses a fuzzy optimisation technique to simultaneously optimise the objectives of SW maximisation and GHG emission minimisation. Both ICA models are tested on two datasets with 10 and 338 capacity supply offers constructed using Ontario data. While both models control GHG emissions as desired, the ICA model with fuzzy optimisation is shown to find a better balance between maximising net SW and minimising GHG emissions, with superior reductions in GHG for minor decreases in SW. Results demonstrate how GHG emission reduction results in increased selection of low carbon generation.

Abstract Image

考虑温室气体的增量容量拍卖公式的模糊优化模型
增量容量拍卖(ICA)是电力系统获取未来发电容量的一种机制。发电机排放的温室气体(GHG)对我们的气候产生了负面影响,因此确实需要减少它们。因此,ICA模型获取减少温室气体排放的未来发电能力至关重要。在本文中,我们提出了两个包含能源限制发电(可再生能源和储能)和温室气体排放约束的ICA模型。所有报价均转换为非强制容量,消除发电报价能量限制的任何影响。第一个ICA模型使用经典优化,并考虑温室气体排放限制和最大化社会福利(SW)。第二个ICA模型使用模糊优化技术同时优化SW最大化和温室气体排放最小化的目标。两种ICA模型都在两个数据集上进行了测试,使用安大略省数据构建了10个和338个容量供应。虽然这两种模型都能按预期控制温室气体排放,但具有模糊优化的ICA模型在最大化净SW和最小化温室气体排放之间找到了更好的平衡,在SW小幅减少的情况下,温室气体的显著减少。结果表明,温室气体减排如何导致低碳发电的选择增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信