Quantum Time–Space Tradeoff for Finding Multiple Collision Pairs

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yassine Hamoudi, F. Magniez
{"title":"Quantum Time–Space Tradeoff for Finding Multiple Collision Pairs","authors":"Yassine Hamoudi, F. Magniez","doi":"10.1145/3589986","DOIUrl":null,"url":null,"abstract":"We study the problem of finding K collision pairs in a random function f : [N] → [N] by using a quantum computer. We prove that the number of queries to the function in the quantum random oracle model must increase significantly when the size of the available memory is limited. Namely, we demonstrate that any algorithm using S qubits of memory must perform a number T of queries that satisfies the tradeoff T3 S ≥ Ω (K3 N). Classically, the same question has only been settled recently by Dinur [22], who showed that the Parallel Collision Search algorithm of van Oorschot and Wiener [36] achieves the optimal time–space tradeoff of T2 S = Θ (K2 N). Our result limits the extent to which quantum computing may decrease this tradeoff. Our method is based on a novel application of Zhandry’s recording query technique [42] for proving lower bounds in the exponentially small success probability regime. As a second application, we give a simpler proof of the time–space tradeoff T2 S ≥ Ω (N3) for sorting N numbers on a quantum computer, which was first obtained by Klauck, Špalek, and de Wolf [30].","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 15

Abstract

We study the problem of finding K collision pairs in a random function f : [N] → [N] by using a quantum computer. We prove that the number of queries to the function in the quantum random oracle model must increase significantly when the size of the available memory is limited. Namely, we demonstrate that any algorithm using S qubits of memory must perform a number T of queries that satisfies the tradeoff T3 S ≥ Ω (K3 N). Classically, the same question has only been settled recently by Dinur [22], who showed that the Parallel Collision Search algorithm of van Oorschot and Wiener [36] achieves the optimal time–space tradeoff of T2 S = Θ (K2 N). Our result limits the extent to which quantum computing may decrease this tradeoff. Our method is based on a novel application of Zhandry’s recording query technique [42] for proving lower bounds in the exponentially small success probability regime. As a second application, we give a simpler proof of the time–space tradeoff T2 S ≥ Ω (N3) for sorting N numbers on a quantum computer, which was first obtained by Klauck, Špalek, and de Wolf [30].
寻找多个碰撞对的量子时空权衡
我们研究了在随机函数f:[N]中寻找K个碰撞对的问题→ [N] 通过使用量子计算机。我们证明,当可用内存的大小有限时,对量子随机预言机模型中函数的查询数量必须显著增加。也就是说,我们证明了任何使用存储器的S个量子位的算法都必须执行满足折衷T3 S≥Ω(K3 N)的T个查询。传统上,Dinur[22]最近才解决了同样的问题,他表明van Oorshot和Wiener[36]的并行碰撞搜索算法实现了T2 S=θ(K2 N)的最佳时间-空间折衷。我们的结果限制了量子计算可以在多大程度上减少这种权衡。我们的方法基于Zhandry的记录查询技术[42]的一个新应用,用于证明指数小成功概率情况下的下界。作为第二个应用,我们给出了在量子计算机上排序N个数的时间-空间折衷T2 S≥Ω(N3)的一个更简单的证明,这是Klauck、Špalek和de Wolf[30]首次获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信