Modules over algebraic cobordism

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson
{"title":"Modules over algebraic cobordism","authors":"E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson","doi":"10.1017/fmp.2020.13","DOIUrl":null,"url":null,"abstract":"Abstract We prove that the $\\infty $-category of $\\mathrm{MGL} $-modules over any scheme is equivalent to the $\\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\\mathbf{P} ^1$-loop spaces, we deduce that very effective $\\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers. Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\\Omega ^\\infty _{\\mathbf{P} ^1}\\mathrm{MGL} $ is the $\\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\\Omega ^\\infty _{\\mathbf{P} ^1} \\Sigma ^n_{\\mathbf{P} ^1} \\mathrm{MGL} $ is the $\\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2020.13","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2020.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 41

Abstract

Abstract We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\mathbf{P} ^1$-loop spaces, we deduce that very effective $\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers. Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\Omega ^\infty _{\mathbf{P} ^1}\mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\Omega ^\infty _{\mathbf{P} ^1} \Sigma ^n_{\mathbf{P} ^1} \mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.
代数协上的模
摘要我们证明了在任何方案上$\mathrm{MGL}$-模的$\infty$-范畴等价于具有有限同组转移的运动谱的$\infty$-范畴。利用无限$\mathbf{P}^1$-循环空间的识别原理,我们推导出完美域上非常有效的$\mathrm{MGL}$-模等价于具有有限合成转移的类群运动空间。在此过程中,我们根据具有相应切向结构的有限拟光滑导出格式的模堆栈,描述了由非负秩的虚拟向量束建立的任何动力Thom谱。特别地,在正则等特征基上,我们证明了$\Omega^\infty _{\mathbf{P}^1}\mathrm{MGL}$是虚拟有限平坦局部完全交的模堆栈的$\mathbf{a}^1$-同构类型,并且对于$n>0$,$\Omega^\infty_{\mathbf{P}^1}\Sigma^n_{\math bf{{P}^1}\mathrm{MGL}$是虚拟维度$-n$的有限拟光滑导出格式的模堆栈的$\mathbf{A}^1$-同伦型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信