{"title":"An Exponential Decay Model for Decaying of Contact Patch Friction Steering Moment with Rolling Speed","authors":"Jai Prakash, M. Vignati, E. Sabbioni","doi":"10.2346/tire.23.21017","DOIUrl":null,"url":null,"abstract":"\n Steering torque is a very important quantity for the driver's response. In fact, it gives the driver an idea of the road adherence condition during driving. Several models have been developed to simulate shear forces at the contact patch; most of them are based on semi-empirical tire models that account for slip and slip angles. They have good reliability when speed is high enough, but at very low speed, such as in parking, these models suffer from reliability and numerical issues. This paper presents a model to compute the steering moment due to contact patch friction at any longitudinal speed including pivot steering condition. In particular, it supplements the pivot steering model with a novel exponential decay of moment model to simulate steering moment for various wheel rolling speeds. The decay rate was found to be dependent upon contact patch geometry and rolling speed.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.23.21017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Steering torque is a very important quantity for the driver's response. In fact, it gives the driver an idea of the road adherence condition during driving. Several models have been developed to simulate shear forces at the contact patch; most of them are based on semi-empirical tire models that account for slip and slip angles. They have good reliability when speed is high enough, but at very low speed, such as in parking, these models suffer from reliability and numerical issues. This paper presents a model to compute the steering moment due to contact patch friction at any longitudinal speed including pivot steering condition. In particular, it supplements the pivot steering model with a novel exponential decay of moment model to simulate steering moment for various wheel rolling speeds. The decay rate was found to be dependent upon contact patch geometry and rolling speed.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.