{"title":"GENETIC ALGORITHM - OPTIMIZED GATED RECURRENT UNIT (GRU) NETWORK FOR SEMANTIC WEB SERVICES CLASSIFICATION","authors":"S. S, Karpagam G R, V. B","doi":"10.22452/mjcs.vol35no1.5","DOIUrl":null,"url":null,"abstract":"In the current era, as there is an abundant expansion of functionally similar web services, it becomes a prodigious issue for the web service discovery process. The service classification plays a significant role to greatly reduce the search space and retrieves the desirable service quickly and accurately. The classification is performed using the functional values. Recent research activities recommend RNN (Recurrent Neural Network) deep learning algorithms for efficient classification process. The state-of-the-art of GRU (Gated Recurrent Unit) one of the RNN model, provides a proficient classification process. However, the ratio of training and testing dataset, and hyperparameters namely neural network size, and batch size etc, affects the classification accuracy. The objective of the paper is to incorporate GRU model for efficient classification process. The novelty of the proposed model lies in implementing the GRU model for semantic web service classification. Furthermore, the genetic algorithm is used to predict the optimal ratio of training and testing dataset and optimal hidden neural Network units of GRU model in order to attain optimal classification. The experimental results exemplifies that the semantic web service classification is efficiently deliberated using the proposed GA-GRU model that outperforms the classification process as compared with the conventional semantic extraction using accuracy, precision, F-measure, recall and FDR (False Date Rate) rate.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol35no1.5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In the current era, as there is an abundant expansion of functionally similar web services, it becomes a prodigious issue for the web service discovery process. The service classification plays a significant role to greatly reduce the search space and retrieves the desirable service quickly and accurately. The classification is performed using the functional values. Recent research activities recommend RNN (Recurrent Neural Network) deep learning algorithms for efficient classification process. The state-of-the-art of GRU (Gated Recurrent Unit) one of the RNN model, provides a proficient classification process. However, the ratio of training and testing dataset, and hyperparameters namely neural network size, and batch size etc, affects the classification accuracy. The objective of the paper is to incorporate GRU model for efficient classification process. The novelty of the proposed model lies in implementing the GRU model for semantic web service classification. Furthermore, the genetic algorithm is used to predict the optimal ratio of training and testing dataset and optimal hidden neural Network units of GRU model in order to attain optimal classification. The experimental results exemplifies that the semantic web service classification is efficiently deliberated using the proposed GA-GRU model that outperforms the classification process as compared with the conventional semantic extraction using accuracy, precision, F-measure, recall and FDR (False Date Rate) rate.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus