Climate change impact on water quality in the integrated Mahabad Dam watershed-reservoir system

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL
Mohammad Nazari-Sharabian , Masoud Taheriyoun
{"title":"Climate change impact on water quality in the integrated Mahabad Dam watershed-reservoir system","authors":"Mohammad Nazari-Sharabian ,&nbsp;Masoud Taheriyoun","doi":"10.1016/j.jher.2021.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change, besides global warming, is expected to intensify the hydrological cycle, which can impact watershed nutrient yields and affect water quality in the receiving water bodies. The Mahabad Dam Reservoir in northwest Iran is a eutrophic reservoir due to excessive watershed nutrient input, which could be exacerbated due to climate change. In this regard, a holistic approach was employed by linking a climate model (CanESM2), watershed-scale model (SWAT), and reservoir water quality model (CE-QUAL-W2). The triple model investigates the cumulative climate change effects on hydrological parameters, watershed yields, and the reservoir’s water quality. The SDSM model downscaled the output of the climate model under moderate (RCP4.5) and extreme (RCP8.5) scenarios for the periods of 2021–2040 and 2041–2060. The impact of future climate conditions was investigated on the watershed runoff and total phosphorus (TP) load, and consequently, water quality status in the dam’s reservoir. The results of comparing future conditions (2021–2060) with observed present values under moderate to extreme climate scenarios showed a 4–7% temperature increase and a 6–11% precipitation decrease. Moreover, the SWAT model showed a 9–16% decline in streamflow and a 12–18% decline in the watershed TP load for the same comparative period. Finally, CE-QUAL-W2 model results showed a 3–8% increase in the reservoir water temperature and a 10–16% increase in TP concentration. It indicates that climate change would intensify the thermal stratification and eutrophication level in the reservoir, especially during the year’s warm months. This finding specifies an alarming condition that demands serious preventive and corrective measures.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"40 ","pages":"Pages 28-37"},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644321000897","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

Abstract

Climate change, besides global warming, is expected to intensify the hydrological cycle, which can impact watershed nutrient yields and affect water quality in the receiving water bodies. The Mahabad Dam Reservoir in northwest Iran is a eutrophic reservoir due to excessive watershed nutrient input, which could be exacerbated due to climate change. In this regard, a holistic approach was employed by linking a climate model (CanESM2), watershed-scale model (SWAT), and reservoir water quality model (CE-QUAL-W2). The triple model investigates the cumulative climate change effects on hydrological parameters, watershed yields, and the reservoir’s water quality. The SDSM model downscaled the output of the climate model under moderate (RCP4.5) and extreme (RCP8.5) scenarios for the periods of 2021–2040 and 2041–2060. The impact of future climate conditions was investigated on the watershed runoff and total phosphorus (TP) load, and consequently, water quality status in the dam’s reservoir. The results of comparing future conditions (2021–2060) with observed present values under moderate to extreme climate scenarios showed a 4–7% temperature increase and a 6–11% precipitation decrease. Moreover, the SWAT model showed a 9–16% decline in streamflow and a 12–18% decline in the watershed TP load for the same comparative period. Finally, CE-QUAL-W2 model results showed a 3–8% increase in the reservoir water temperature and a 10–16% increase in TP concentration. It indicates that climate change would intensify the thermal stratification and eutrophication level in the reservoir, especially during the year’s warm months. This finding specifies an alarming condition that demands serious preventive and corrective measures.

Abstract Image

气候变化对Mahabad坝流域-水库综合系统水质的影响
除全球变暖外,气候变化预计还会加剧水文循环,从而影响流域养分产量并影响接收水体的水质。伊朗西北部的Mahabad大坝水库是一个富营养化水库,由于流域养分输入过多,气候变化可能会加剧这种情况。在这方面,采用了一种整体方法,将气候模型(CanESM2)、流域尺度模型(SWAT)和水库水质模型(ce - quality - w2)联系起来。三重模型研究了累积气候变化对水文参数、流域产量和水库水质的影响。SDSM模式降低了2021-2040年和2041-2060年期间中(RCP4.5)和极端(RCP8.5)情景下气候模式的输出。研究了未来气候条件对流域径流和总磷负荷的影响,进而对水库水质状况的影响。在中至极端气候情景下,未来条件(2021-2060年)与观测值的比较结果显示,气温升高4-7%,降水减少6-11%。此外,SWAT模型显示,在相同的比较时期,河流流量下降了9-16%,流域TP负荷下降了12-18%。最后,ce - quality - w2模型结果显示,水库水温升高3-8%,TP浓度升高10-16%。这表明气候变化将加剧水库的热分层和富营养化水平,特别是在一年中温暖的月份。这一发现说明了一种令人震惊的情况,需要采取认真的预防和纠正措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信