{"title":"Canonical transformations from Jacobi to Whittaker","authors":"Craig Fraser, Michiyo Nakane","doi":"10.1007/s00407-022-00303-9","DOIUrl":null,"url":null,"abstract":"<div><p>The idea of a canonical transformation emerged in 1837 in the course of Carl Jacobi's researches in analytical dynamics. To understand Jacobi's moment of discovery it is necessary to examine some background, especially the work of Joseph Lagrange and Siméon Poisson on the variation of arbitrary constants as well as some of the dynamical discoveries of William Rowan Hamilton. Significant figures following Jacobi in the middle of the century were Adolphe Desboves and William Donkin, while the delayed posthumous publication in 1866 of Jacobi's full dynamical corpus was a critical event. François Tisserand's doctoral dissertation of 1868 was devoted primarily to lunar and planetary theory but placed Hamilton–Jacobi mathematical methods at the forefront of the investigation. Henri Poincaré's writings on celestial mechanics in the period 1890–1910 succeeded in making canonical transformations a fundamental part of the dynamical theory. Poincaré offered a mathematical vision of the subject that differed from Jacobi's and would become influential in subsequent research. Two prominent researchers around 1900 were Carl Charlier and Edmund Whittaker, and their books included chapters devoted explicitly to transformation theory. In the first three decades of the twentieth century Hamilton–Jacobi theory in general and canonical transformations in particular would be embraced by a range of researchers in astronomy, physics and mathematics.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 3","pages":"241 - 343"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-022-00303-9","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The idea of a canonical transformation emerged in 1837 in the course of Carl Jacobi's researches in analytical dynamics. To understand Jacobi's moment of discovery it is necessary to examine some background, especially the work of Joseph Lagrange and Siméon Poisson on the variation of arbitrary constants as well as some of the dynamical discoveries of William Rowan Hamilton. Significant figures following Jacobi in the middle of the century were Adolphe Desboves and William Donkin, while the delayed posthumous publication in 1866 of Jacobi's full dynamical corpus was a critical event. François Tisserand's doctoral dissertation of 1868 was devoted primarily to lunar and planetary theory but placed Hamilton–Jacobi mathematical methods at the forefront of the investigation. Henri Poincaré's writings on celestial mechanics in the period 1890–1910 succeeded in making canonical transformations a fundamental part of the dynamical theory. Poincaré offered a mathematical vision of the subject that differed from Jacobi's and would become influential in subsequent research. Two prominent researchers around 1900 were Carl Charlier and Edmund Whittaker, and their books included chapters devoted explicitly to transformation theory. In the first three decades of the twentieth century Hamilton–Jacobi theory in general and canonical transformations in particular would be embraced by a range of researchers in astronomy, physics and mathematics.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.