Combined Facile Synthesis, Purification, and Surface Functionalization Approach Yields Monodispersed Gold Nanorods for Drug Delivery Applications.

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Particle & Particle Systems Characterization Pub Date : 2023-10-01 Epub Date: 2023-09-05 DOI:10.1002/ppsc.202300043
Shunping Han, Khuloud T Al-Jamal
{"title":"Combined Facile Synthesis, Purification, and Surface Functionalization Approach Yields Monodispersed Gold Nanorods for Drug Delivery Applications.","authors":"Shunping Han, Khuloud T Al-Jamal","doi":"10.1002/ppsc.202300043","DOIUrl":null,"url":null,"abstract":"<p><p>Synthesizing gold nanorods (AuNRs) by seed-mediated growth method results in the presence of undesired size and shape particles by-products occupying 10-90% of the population. In this study, AuNRs are synthesized by the seed-mediated growth method using cetyltrimethylammonium bromide (CTAB) as a surfactant. AuNRs with redshifted longitudinal localized surface plasmon resonance (LLSPR) peak, localized in the biological \"transparency window\" (650-1350 nm), are synthesized after optimizing seed solution, silver nitrate solution, and hydrochloric acid solution volumes, based on the published protocols. A two-step purification method, dialysis followed by centrifugation, is applied to remove excess CTAB and collect LLSPR-redshifted AuNRs with high rod purity (>90%). CTAB is subsequently exchanged with polyethylene glycol (PEG) to improve AuNRs biocompatibility. PEGylated AuNRs are confirmed innocuous to both SN4741 cells and B16F10 cells by the modified MTT assay and the modified lactate dehydrogenase (LDH) assay up to 1 nm and 24 h incubation. In this study, a combined facile synthesis, purification, and surface functionalization approach is proposed to obtain water-dispersible monodispersed AuNRs for drug delivery applications.</p>","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesizing gold nanorods (AuNRs) by seed-mediated growth method results in the presence of undesired size and shape particles by-products occupying 10-90% of the population. In this study, AuNRs are synthesized by the seed-mediated growth method using cetyltrimethylammonium bromide (CTAB) as a surfactant. AuNRs with redshifted longitudinal localized surface plasmon resonance (LLSPR) peak, localized in the biological "transparency window" (650-1350 nm), are synthesized after optimizing seed solution, silver nitrate solution, and hydrochloric acid solution volumes, based on the published protocols. A two-step purification method, dialysis followed by centrifugation, is applied to remove excess CTAB and collect LLSPR-redshifted AuNRs with high rod purity (>90%). CTAB is subsequently exchanged with polyethylene glycol (PEG) to improve AuNRs biocompatibility. PEGylated AuNRs are confirmed innocuous to both SN4741 cells and B16F10 cells by the modified MTT assay and the modified lactate dehydrogenase (LDH) assay up to 1 nm and 24 h incubation. In this study, a combined facile synthesis, purification, and surface functionalization approach is proposed to obtain water-dispersible monodispersed AuNRs for drug delivery applications.

Abstract Image

结合易合成、纯化和表面功能化方法制备单分散金纳米棒用于药物输送应用
通过种子介导的生长方法合成金纳米棒(AuNRs)会导致存在不期望的尺寸和形状的副产物颗粒,占总数量的10-90%。在本研究中,以十六烷基三甲基溴化铵(CTAB)为表面活性剂,通过种子介导生长法合成了AuNRs。基于已发表的方案,在优化种子溶液、硝酸银溶液和盐酸溶液体积后,合成了具有红移的纵向局域表面等离子体共振(LLSPR)峰的AuNRs,该峰位于生物“透明窗口”(650–1350 nm)。采用两步纯化方法,即透析和离心,去除过量的CTAB,并收集具有高棒纯度(>90%)的LLSPR红移AuNRs。CTAB随后与聚乙二醇(PEG)交换以提高AuNRs的生物相容性。通过修饰的MTT测定和修饰的乳酸脱氢酶(LDH)测定,PEG化的AuNRs被证实对SN4741细胞和B16F10细胞都是无害的,直到1nm和24小时孵育。在本研究中,提出了一种简单合成、纯化和表面功能化相结合的方法,以获得用于药物递送应用的水分散性单分散AuNRs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信