Yazhou Li, Xiaopeng Fan, P. Talalay, Yinke Dou, Siyu Lu, Shi-chang Kang, Xiao Li, Jialin Hong
{"title":"Shallow hot-point drill system for active layer temperature measurement along Zhongshan–Dome A traverse, Antarctica","authors":"Yazhou Li, Xiaopeng Fan, P. Talalay, Yinke Dou, Siyu Lu, Shi-chang Kang, Xiao Li, Jialin Hong","doi":"10.1017/aog.2020.87","DOIUrl":null,"url":null,"abstract":"Abstract In glaciology, snow–firn temperature at 10 m is considered a representation of the mean annual air temperature at the surface (MAAT) of the studied site. Although MAAT is an important parameter in ice-sheet investigations, it has not been widely measured in Antarctica. To measure the 10 m snow–firn temperature in Antarctica, a shallow hot-point drill system is designed. In this simple and lightweight system, a hot-point drill can melt boreholes with a diameter of 34 mm in the snow–firn to a depth of 30 m and a temperature sensors string can measure the borehole temperature precisely. In the 2018/19 field season, 16 boreholes along the Zhongshan–Dome A traverse were drilled, and the borehole temperature was measured. Although certain problems existed pertaining to the hot-point drill, a total depth of ~244 m was successfully drilled at an average penetration rate of ~10 m h−1. After borehole drilling, ~12–15 h were generally required for the borehole to achieve thermal equilibrium with the surroundings. Preliminary results demonstrated that the 10 m snow–firn temperature along the traverse route was affected by the increasing altitude and latitude, and it decreased gradually with an increase in the distance from Zhongshan station.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"62 1","pages":"157 - 165"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/aog.2020.87","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2020.87","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In glaciology, snow–firn temperature at 10 m is considered a representation of the mean annual air temperature at the surface (MAAT) of the studied site. Although MAAT is an important parameter in ice-sheet investigations, it has not been widely measured in Antarctica. To measure the 10 m snow–firn temperature in Antarctica, a shallow hot-point drill system is designed. In this simple and lightweight system, a hot-point drill can melt boreholes with a diameter of 34 mm in the snow–firn to a depth of 30 m and a temperature sensors string can measure the borehole temperature precisely. In the 2018/19 field season, 16 boreholes along the Zhongshan–Dome A traverse were drilled, and the borehole temperature was measured. Although certain problems existed pertaining to the hot-point drill, a total depth of ~244 m was successfully drilled at an average penetration rate of ~10 m h−1. After borehole drilling, ~12–15 h were generally required for the borehole to achieve thermal equilibrium with the surroundings. Preliminary results demonstrated that the 10 m snow–firn temperature along the traverse route was affected by the increasing altitude and latitude, and it decreased gradually with an increase in the distance from Zhongshan station.
摘要在冰川学中,10米处的积雪温度被认为是研究地点地表年平均气温(MAAT)的代表。尽管MAAT是冰盖调查中的一个重要参数,但它在南极洲尚未得到广泛测量。为了测量南极洲10米的雪原温度,设计了一个浅层热点钻探系统。在这个简单轻便的系统中,热点钻机可以在雪中融化直径为34毫米的钻孔,深度为30米,温度传感器串可以精确测量钻孔温度。2018/19年野外季节,沿中山-穹顶A导线共钻探了16个钻孔,并测量了钻孔温度。尽管热点钻机存在某些问题,但以约10 m h−1的平均渗透率成功钻取了约244 m的总深度。钻孔后,钻孔通常需要约12–15小时才能与周围环境实现热平衡。初步结果表明,导线沿线10m雪原温度受海拔和纬度增加的影响,随着距离中山站距离的增加而逐渐降低。
期刊介绍:
Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.