{"title":"A two-dimensional multimaterial ALE method for compressible flows using coupled volume of fluid and level set interface reconstruction","authors":"Jian Cheng, Fan Zhang","doi":"10.1002/fld.5230","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a two-dimensional multimaterial arbitrary Lagrangian–Eulerian (ALE) method for simulating compressible flows in which a novel coupled volume of fluid and level set interface reconstruction (VOSET) method is developed for interface capturing. The VOSET method combines the merits of both the volume of fluid method and the level set method by using a geometrical iterative operation. Compared to the original VOSET method, the novel VOSET method proposed in this work further improves the accuracy and fidelity in interface reconstruction procedure, especially in under-resolved regions. Several typical two-dimensional numerical experiments are presented to investigate the effectiveness of the proposed VOSET method and its performance when coupling with the multimaterial ALE solver. Numerical results demonstrate its good capability in capturing material interfaces during the simulation of compressible two-material flows.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"95 12","pages":"1870-1887"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5230","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a two-dimensional multimaterial arbitrary Lagrangian–Eulerian (ALE) method for simulating compressible flows in which a novel coupled volume of fluid and level set interface reconstruction (VOSET) method is developed for interface capturing. The VOSET method combines the merits of both the volume of fluid method and the level set method by using a geometrical iterative operation. Compared to the original VOSET method, the novel VOSET method proposed in this work further improves the accuracy and fidelity in interface reconstruction procedure, especially in under-resolved regions. Several typical two-dimensional numerical experiments are presented to investigate the effectiveness of the proposed VOSET method and its performance when coupling with the multimaterial ALE solver. Numerical results demonstrate its good capability in capturing material interfaces during the simulation of compressible two-material flows.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.