Magneto-Structural Analysis of Hydroxido-Bridged CuII2 Complexes: Density Functional Theory and Other Treatments

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Debpriyo Goswami, S. Patra, D. Ray
{"title":"Magneto-Structural Analysis of Hydroxido-Bridged CuII2 Complexes: Density Functional Theory and Other Treatments","authors":"Debpriyo Goswami, S. Patra, D. Ray","doi":"10.3390/magnetochemistry9060154","DOIUrl":null,"url":null,"abstract":"A selection of dimeric Cu(II) complexes with bidentate N,N′ ligands with the general formula [Cu(L)(X)(μ-OH)]2·nH2O and [Cu(L)(μ-OH)]2X2·nH2O were magneto-structurally analyzed using the Density Functional Theory (DFT). A Broken Symmetry-Density Functional Theory (BS-DFT) study was undertaken for these complexes with relevant decomposition schemes that gave insight into the effect of the nature of the ligand and coordination environment on the DFT-predicted coupling constants (J). The impact of the spin population, which correlates well with the Cu-O-Cu bridging angles and the calculated coupling constant (J) values, was studied. The models were further refined using a complete active space self-consistent field (CASSCF) while expanding the active space from 2 orbitals 2 electrons (2,2) to 10 orbitals 18 electrons (18,10). These models were approximated using multireference methods (n-electron valence state perturbation theory and difference dedicated configuration interaction), and a better approximation of J values was found as expected. Orbitals involved in the superexchange pathway were also visualized.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060154","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

A selection of dimeric Cu(II) complexes with bidentate N,N′ ligands with the general formula [Cu(L)(X)(μ-OH)]2·nH2O and [Cu(L)(μ-OH)]2X2·nH2O were magneto-structurally analyzed using the Density Functional Theory (DFT). A Broken Symmetry-Density Functional Theory (BS-DFT) study was undertaken for these complexes with relevant decomposition schemes that gave insight into the effect of the nature of the ligand and coordination environment on the DFT-predicted coupling constants (J). The impact of the spin population, which correlates well with the Cu-O-Cu bridging angles and the calculated coupling constant (J) values, was studied. The models were further refined using a complete active space self-consistent field (CASSCF) while expanding the active space from 2 orbitals 2 electrons (2,2) to 10 orbitals 18 electrons (18,10). These models were approximated using multireference methods (n-electron valence state perturbation theory and difference dedicated configuration interaction), and a better approximation of J values was found as expected. Orbitals involved in the superexchange pathway were also visualized.
羟基桥接CuII2配合物的磁结构分析:密度泛函理论和其他处理
用密度泛函理论(DFT)对Cu(II)与通式为[Cu(L)(X)(μ-OH)]2·nH2O和[Cu。对这些配合物进行了破缺对称密度泛函理论(BS-DFT)研究,并采用了相关的分解方案,深入了解了配体和配位环境的性质对DFT预测的耦合常数的影响(J)。研究了自旋布居的影响,它与Cu-O-Cu桥接角和计算的耦合常数(J)值密切相关。使用完全活性空间自洽场(CASSCF)进一步细化模型,同时将活性空间从2个轨道2个电子(2,2)扩展到10个轨道18个电子(18,10)。使用多参考方法(n-电子价态微扰理论和差分专用组态相互作用)对这些模型进行了近似,并如预期的那样找到了J值的更好近似值。参与超交换途径的轨道也被可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信