{"title":"DUS Inverse Weibull Distribution and Parameter Estimation in Regression Model","authors":"H. Gül, S. Acitas, H. Bayrak, B. Şenoğlu","doi":"10.19113/sdufenbed.1107862","DOIUrl":null,"url":null,"abstract":"This paper considers various estimation methods to estimate the unknown parameters of the DUS Inverse Weibull (DIW) distribution using the maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramer-von Mises (CVM) and the Anderson-Darling (AD) estimators. A Monte-Carlo simulation study is conducted to determine the most preferable estimators in terms of their efficiencies. Furthermore, the distribution of the error terms in the simple linear regression is assumed to be DIW to show the implementation of it to the linear models. We also carry out a simulation study for comparing the performances of the estimators of the unknown regression parameters.","PeriodicalId":30858,"journal":{"name":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19113/sdufenbed.1107862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers various estimation methods to estimate the unknown parameters of the DUS Inverse Weibull (DIW) distribution using the maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramer-von Mises (CVM) and the Anderson-Darling (AD) estimators. A Monte-Carlo simulation study is conducted to determine the most preferable estimators in terms of their efficiencies. Furthermore, the distribution of the error terms in the simple linear regression is assumed to be DIW to show the implementation of it to the linear models. We also carry out a simulation study for comparing the performances of the estimators of the unknown regression parameters.