DUS Inverse Weibull Distribution and Parameter Estimation in Regression Model

H. Gül, S. Acitas, H. Bayrak, B. Şenoğlu
{"title":"DUS Inverse Weibull Distribution and Parameter Estimation in Regression Model","authors":"H. Gül, S. Acitas, H. Bayrak, B. Şenoğlu","doi":"10.19113/sdufenbed.1107862","DOIUrl":null,"url":null,"abstract":"This paper considers various estimation methods to estimate the unknown parameters of the DUS Inverse Weibull (DIW) distribution using the maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramer-von Mises (CVM) and the Anderson-Darling (AD) estimators. A Monte-Carlo simulation study is conducted to determine the most preferable estimators in terms of their efficiencies. Furthermore, the distribution of the error terms in the simple linear regression is assumed to be DIW to show the implementation of it to the linear models. We also carry out a simulation study for comparing the performances of the estimators of the unknown regression parameters.","PeriodicalId":30858,"journal":{"name":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19113/sdufenbed.1107862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers various estimation methods to estimate the unknown parameters of the DUS Inverse Weibull (DIW) distribution using the maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramer-von Mises (CVM) and the Anderson-Darling (AD) estimators. A Monte-Carlo simulation study is conducted to determine the most preferable estimators in terms of their efficiencies. Furthermore, the distribution of the error terms in the simple linear regression is assumed to be DIW to show the implementation of it to the linear models. We also carry out a simulation study for comparing the performances of the estimators of the unknown regression parameters.
回归模型中的DUS逆威布尔分布及参数估计
本文考虑了使用最大似然(ML)、最小二乘(LS)、加权最小二乘(WLS)、克雷默·冯·米塞斯(CVM)和安德森·达林(AD)估计来估计DUS逆威布尔(DIW)分布的未知参数的各种估计方法。进行了蒙特卡罗模拟研究,以根据其效率确定最优选的估计量。此外,假设简单线性回归中误差项的分布为DIW,以显示其对线性模型的实现。我们还进行了模拟研究,以比较未知回归参数的估计量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
37
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信