Cassandra G. Skaggs, Kevin M. Ringelman, C. Loesch, Michael L. Szymanski, F. Rohwer, K. Kemink
{"title":"Proximity to oil wells in North Dakota does not impact nest success of ducks but lowers nest densities","authors":"Cassandra G. Skaggs, Kevin M. Ringelman, C. Loesch, Michael L. Szymanski, F. Rohwer, K. Kemink","doi":"10.1093/condor/duaa012","DOIUrl":null,"url":null,"abstract":"ABSTRACT Over the past decade, the United States has seen a rapid increase in oil and gas extraction from areas where resources were previously thought to be unrecoverable, particularly the Bakken shale formation in North Dakota. The Bakken overlaps with the Prairie Pothole Region, the most critical habitat in North America for breeding ducks, where oil and gas extraction through hydraulic fracturing has the potential to impact more than a million duck pairs in the United States alone. Here, we evaluated the effect of oil and gas development on nesting ducks in 2015–2017 across 5 counties in North Dakota. Using data from ∼4,000 nests we found that nest survival was higher at sites composed of a higher percentage of grassland, and for nests found closer to major roads. We found no effect of any metric of oil and gas extraction activity on duck nest survival. Using survival-corrected estimates of nest density, we found higher densities of nests closer to roads, but lower nest densities at sites surrounded by more wells. Our top-ranked model indicated that nest density was predicted to decline by 14% relative to sites with no development, given the average number of wells (3.15 wells) within 1,500 m of a site. However, within a nesting field, we found no evidence that ducks were avoiding petroleum-related infrastructure at smaller spatial scales. Our results indicate mixed effects of oil and gas development on nesting waterfowl, and highlight both the resiliency of dabbing ducks to environmental change and the need for additional research on other aspects of duck breeding biology.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa012","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/condor/duaa012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT Over the past decade, the United States has seen a rapid increase in oil and gas extraction from areas where resources were previously thought to be unrecoverable, particularly the Bakken shale formation in North Dakota. The Bakken overlaps with the Prairie Pothole Region, the most critical habitat in North America for breeding ducks, where oil and gas extraction through hydraulic fracturing has the potential to impact more than a million duck pairs in the United States alone. Here, we evaluated the effect of oil and gas development on nesting ducks in 2015–2017 across 5 counties in North Dakota. Using data from ∼4,000 nests we found that nest survival was higher at sites composed of a higher percentage of grassland, and for nests found closer to major roads. We found no effect of any metric of oil and gas extraction activity on duck nest survival. Using survival-corrected estimates of nest density, we found higher densities of nests closer to roads, but lower nest densities at sites surrounded by more wells. Our top-ranked model indicated that nest density was predicted to decline by 14% relative to sites with no development, given the average number of wells (3.15 wells) within 1,500 m of a site. However, within a nesting field, we found no evidence that ducks were avoiding petroleum-related infrastructure at smaller spatial scales. Our results indicate mixed effects of oil and gas development on nesting waterfowl, and highlight both the resiliency of dabbing ducks to environmental change and the need for additional research on other aspects of duck breeding biology.