JiaWei Gao , Ji Chen , Xin Hou , QiHang Mei , YongHeng Liu
{"title":"Discussion on pile axial load test methods and their applicability in cold regions","authors":"JiaWei Gao , Ji Chen , Xin Hou , QiHang Mei , YongHeng Liu","doi":"10.1016/j.rcar.2022.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms. Affected by the temperature and ice content of frozen ground, the interface contact relationship between pile foundation and frozen soil is complicated, making pile axial load measurements more uncertain than that in non-frozen ground. Therefore, it is necessary to gain an in-depth understanding of the current pile axial load test methods. Four methods are systematically reviewed: vibrating wire sensors, strain gauges, sliding micrometers, and optical fiber strain sensors. At the same time, the applicability of the four test methods in frozen soil regions is discussed in detail. The first two methods are mature and commonly used. The sliding micrometer is only suitable for short-term measurement. While the Fiber Bragg grating (FBG) strain gauge meets the monitoring requirements, the Brillouin optical time-domain reflectometer (BOTDR) needs further verification. This paper aims to provide a technical reference for selecting and applying different methods in the pile axial load test for the stability study and bearing capacity assessment of pile foundations in cold regions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097158322000040/pdfft?md5=d0065e18d9524c377fffd202966ecc47&pid=1-s2.0-S2097158322000040-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097158322000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms. Affected by the temperature and ice content of frozen ground, the interface contact relationship between pile foundation and frozen soil is complicated, making pile axial load measurements more uncertain than that in non-frozen ground. Therefore, it is necessary to gain an in-depth understanding of the current pile axial load test methods. Four methods are systematically reviewed: vibrating wire sensors, strain gauges, sliding micrometers, and optical fiber strain sensors. At the same time, the applicability of the four test methods in frozen soil regions is discussed in detail. The first two methods are mature and commonly used. The sliding micrometer is only suitable for short-term measurement. While the Fiber Bragg grating (FBG) strain gauge meets the monitoring requirements, the Brillouin optical time-domain reflectometer (BOTDR) needs further verification. This paper aims to provide a technical reference for selecting and applying different methods in the pile axial load test for the stability study and bearing capacity assessment of pile foundations in cold regions.