Multiscale depth of anaesthesia prediction for surgery using frontal cortex electroencephalography

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Ejay Nsugbe, Stephanie Connelly
{"title":"Multiscale depth of anaesthesia prediction for surgery using frontal cortex electroencephalography","authors":"Ejay Nsugbe,&nbsp;Stephanie Connelly","doi":"10.1049/htl2.12025","DOIUrl":null,"url":null,"abstract":"<p>Hypnotic and sedative anaesthetic agents are employed during multiple medical interventions to prevent patient awareness. Careful titration of agent dosing is required to avoid negative side effects; the accuracy thereof may be improved by Depth of Anaesthesia Monitoring. This work investigates the potential of a patient specific depth monitoring prediction using electroencephalography recorded neural oscillation from the frontal lobe of 10 patients during sedation, where a comparison of the prediction accuracy was made across five different approaches to post-processing; Noise Assisted-Empirical Mode Decomposition, the Raw Signal, Linear Series Decomposition Learner, Deep Wavelet Scattering and Deep Learning features. These methods towards anaesthesia depth prediction were investigated using the Bispectral Index as ground truth, where it was seen that the Raw Signal, enhanced feature set and a low complexity classification model (Linear Discriminant Analysis) provided the best classification accuracy, in the region of 85.65 % ±10.23 % across the 10 subjects. Subsequent work in this area would now build on these results and validate the best performing methods on a wider cohort of patients, investigate means of continuous DoA estimation using regressions, and also feature optimisation exercises in order to further streamline and reduce the computation complexity of the designed model.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"9 3","pages":"43-53"},"PeriodicalIF":2.8000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12025","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5

Abstract

Hypnotic and sedative anaesthetic agents are employed during multiple medical interventions to prevent patient awareness. Careful titration of agent dosing is required to avoid negative side effects; the accuracy thereof may be improved by Depth of Anaesthesia Monitoring. This work investigates the potential of a patient specific depth monitoring prediction using electroencephalography recorded neural oscillation from the frontal lobe of 10 patients during sedation, where a comparison of the prediction accuracy was made across five different approaches to post-processing; Noise Assisted-Empirical Mode Decomposition, the Raw Signal, Linear Series Decomposition Learner, Deep Wavelet Scattering and Deep Learning features. These methods towards anaesthesia depth prediction were investigated using the Bispectral Index as ground truth, where it was seen that the Raw Signal, enhanced feature set and a low complexity classification model (Linear Discriminant Analysis) provided the best classification accuracy, in the region of 85.65 % ±10.23 % across the 10 subjects. Subsequent work in this area would now build on these results and validate the best performing methods on a wider cohort of patients, investigate means of continuous DoA estimation using regressions, and also feature optimisation exercises in order to further streamline and reduce the computation complexity of the designed model.

Abstract Image

应用额叶皮质脑电图预测手术多尺度麻醉深度
催眠和镇静麻醉剂在多种医疗干预中使用,以防止患者的意识。需要仔细滴定药物剂量以避免负面副作用;其准确性可通过麻醉深度监测来提高。本研究利用脑电图记录了镇静期间10名患者额叶的神经振荡,研究了患者特定深度监测预测的潜力,并比较了五种不同的后处理方法的预测准确性;噪声辅助经验模态分解,原始信号,线性序列分解学习器,深度小波散射和深度学习特征。这些麻醉深度预测方法采用双谱指数作为基础真实值进行了研究,结果表明,原始信号、增强特征集和低复杂度分类模型(线性判别分析)提供了最好的分类精度,在10个受试者中为85.65%±10.23%。该领域的后续工作现在将建立在这些结果的基础上,并在更广泛的患者队列中验证最佳性能方法,研究使用回归的连续DoA估计方法,并进行优化练习,以进一步简化和降低设计模型的计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信