{"title":"Multiscale depth of anaesthesia prediction for surgery using frontal cortex electroencephalography","authors":"Ejay Nsugbe, Stephanie Connelly","doi":"10.1049/htl2.12025","DOIUrl":null,"url":null,"abstract":"<p>Hypnotic and sedative anaesthetic agents are employed during multiple medical interventions to prevent patient awareness. Careful titration of agent dosing is required to avoid negative side effects; the accuracy thereof may be improved by Depth of Anaesthesia Monitoring. This work investigates the potential of a patient specific depth monitoring prediction using electroencephalography recorded neural oscillation from the frontal lobe of 10 patients during sedation, where a comparison of the prediction accuracy was made across five different approaches to post-processing; Noise Assisted-Empirical Mode Decomposition, the Raw Signal, Linear Series Decomposition Learner, Deep Wavelet Scattering and Deep Learning features. These methods towards anaesthesia depth prediction were investigated using the Bispectral Index as ground truth, where it was seen that the Raw Signal, enhanced feature set and a low complexity classification model (Linear Discriminant Analysis) provided the best classification accuracy, in the region of 85.65 % ±10.23 % across the 10 subjects. Subsequent work in this area would now build on these results and validate the best performing methods on a wider cohort of patients, investigate means of continuous DoA estimation using regressions, and also feature optimisation exercises in order to further streamline and reduce the computation complexity of the designed model.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"9 3","pages":"43-53"},"PeriodicalIF":2.8000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12025","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Hypnotic and sedative anaesthetic agents are employed during multiple medical interventions to prevent patient awareness. Careful titration of agent dosing is required to avoid negative side effects; the accuracy thereof may be improved by Depth of Anaesthesia Monitoring. This work investigates the potential of a patient specific depth monitoring prediction using electroencephalography recorded neural oscillation from the frontal lobe of 10 patients during sedation, where a comparison of the prediction accuracy was made across five different approaches to post-processing; Noise Assisted-Empirical Mode Decomposition, the Raw Signal, Linear Series Decomposition Learner, Deep Wavelet Scattering and Deep Learning features. These methods towards anaesthesia depth prediction were investigated using the Bispectral Index as ground truth, where it was seen that the Raw Signal, enhanced feature set and a low complexity classification model (Linear Discriminant Analysis) provided the best classification accuracy, in the region of 85.65 % ±10.23 % across the 10 subjects. Subsequent work in this area would now build on these results and validate the best performing methods on a wider cohort of patients, investigate means of continuous DoA estimation using regressions, and also feature optimisation exercises in order to further streamline and reduce the computation complexity of the designed model.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.