{"title":"Bifractal Receiver Operating Characteristic Curves: A Formula for Generating Receiver Operating Characteristic Curves in Credit-Scoring Contexts","authors":"Błażej Kochański","doi":"10.21314/JRMV.2020.231","DOIUrl":null,"url":null,"abstract":"This paper formulates a mathematical model for generating receiver operating characteristic (ROC) curves without underlying data. Credit scoring practitioners know that the Gini coefficient usually drops if it is only calculated on cases above the cutoff. This fact is not a mathematical necessity, however, as it is theoretically possible to get an ROC curve that keeps the same Gini coefficient no matter how big a share of lowest score cases are excluded from the calculation (a “right-hand” fractal ROC curve). Analogously, a left-hand fractal ROC curve would be a curve that keeps its Gini coefficient constant below any cutoff point. The model proposed here is a linear combination of left- and right-hand ROC curves. A bifractal ROC curve is drawn with just two parameters: one responsible for the shape of the curve and the other responsible for the area under the curve (a Gini coefficient). As is shown in this paper, most real-life credit-scoring ROC curves lie between the two fractal curves. In consequence, the Gini coefficient will be consistently lower when computed only on approved loans.","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Model Validation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JRMV.2020.231","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
This paper formulates a mathematical model for generating receiver operating characteristic (ROC) curves without underlying data. Credit scoring practitioners know that the Gini coefficient usually drops if it is only calculated on cases above the cutoff. This fact is not a mathematical necessity, however, as it is theoretically possible to get an ROC curve that keeps the same Gini coefficient no matter how big a share of lowest score cases are excluded from the calculation (a “right-hand” fractal ROC curve). Analogously, a left-hand fractal ROC curve would be a curve that keeps its Gini coefficient constant below any cutoff point. The model proposed here is a linear combination of left- and right-hand ROC curves. A bifractal ROC curve is drawn with just two parameters: one responsible for the shape of the curve and the other responsible for the area under the curve (a Gini coefficient). As is shown in this paper, most real-life credit-scoring ROC curves lie between the two fractal curves. In consequence, the Gini coefficient will be consistently lower when computed only on approved loans.
期刊介绍:
As monetary institutions rely greatly on economic and financial models for a wide array of applications, model validation has become progressively inventive within the field of risk. The Journal of Risk Model Validation focuses on the implementation and validation of risk models, and aims to provide a greater understanding of key issues including the empirical evaluation of existing models, pitfalls in model validation and the development of new methods. We also publish papers on back-testing. Our main field of application is in credit risk modelling but we are happy to consider any issues of risk model validation for any financial asset class. The Journal of Risk Model Validation considers submissions in the form of research papers on topics including, but not limited to: Empirical model evaluation studies Backtesting studies Stress-testing studies New methods of model validation/backtesting/stress-testing Best practices in model development, deployment, production and maintenance Pitfalls in model validation techniques (all types of risk, forecasting, pricing and rating)