{"title":"Machine learning to understand patterns of burn severity from the SCU Lightning Complex Fires of August 2020","authors":"C. Potter, Olivia Alexander","doi":"10.51492/cfwj.108.6","DOIUrl":null,"url":null,"abstract":"The SCU Lightning Complex Fire started on 16 August 2020 and burned more than 395,000 acres of woodlands and grasslands in six California counties. Satellite images of pre-fire green vegetation biomass from both 2020 springtime (moist) and summertime (drier) periods, along with slope and aspect were used as predictors of burn severity patterns on the SCU Complex landscape using machine learning algorithms. The main finding from this analysis was that the overall burn severity patterns of the SCU Complex fires could be predicted from pre-fire vegetation biomass, slope, and aspect model input variables with high accuracies of between 50% and 80% using Random Forest machine learning techniques. The August and April biomass cover variables had the highest feature importance values. It can be concluded that the amount of dry biomass present at a given location was essential to predict how severely and completely the 2020 fires burned the vegetation cover and surface soils across this landscape.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51492/cfwj.108.6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The SCU Lightning Complex Fire started on 16 August 2020 and burned more than 395,000 acres of woodlands and grasslands in six California counties. Satellite images of pre-fire green vegetation biomass from both 2020 springtime (moist) and summertime (drier) periods, along with slope and aspect were used as predictors of burn severity patterns on the SCU Complex landscape using machine learning algorithms. The main finding from this analysis was that the overall burn severity patterns of the SCU Complex fires could be predicted from pre-fire vegetation biomass, slope, and aspect model input variables with high accuracies of between 50% and 80% using Random Forest machine learning techniques. The August and April biomass cover variables had the highest feature importance values. It can be concluded that the amount of dry biomass present at a given location was essential to predict how severely and completely the 2020 fires burned the vegetation cover and surface soils across this landscape.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.