Design, implementation, and evaluation of an online flipped classroom with collaborative learning model in an undergraduate chemical engineering course
Lorico DS. Lapitan Jr , Aldrin Lorrenz A. Chan , Noel S. Sabarillo , Divine Angela G. Sumalinog , Joey Mark S. Diaz
{"title":"Design, implementation, and evaluation of an online flipped classroom with collaborative learning model in an undergraduate chemical engineering course","authors":"Lorico DS. Lapitan Jr , Aldrin Lorrenz A. Chan , Noel S. Sabarillo , Divine Angela G. Sumalinog , Joey Mark S. Diaz","doi":"10.1016/j.ece.2023.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>Active learning methods are known to improve motivation, engagement, and student performance<span> in traditional classrooms. However, the COVID-19 pandemic compelled students to continue their studies through an online setting wherein teaching is undertaken remotely and on digital platforms. In this study, the design and implementation of flipped classrooms supported with collaborative learning<span> was evaluated for the remote instruction of Analytical Chemistry. The flipped classroom was designed to include pre-recorded lectures, individual self-assessment questions and in-class group activities (polls and quiz bee). Word problems were given as collaborative tasks to improve the students’ interactions on the learning content. The impact on learning of these instructional practices was evaluated based on students’ learning experience<span> and academic performance, and the instructors’ reflection. The survey at the end of the term gathered quantitative and qualitative data regarding students’ experiences with flipped classroom and peer collaboration methods. The students’ feedback indicated that participation in group collaborative activities had a positive impact on their comprehension of Analytical Chemistry concepts and calculations. Majority of the students indicated that group collaboration was immensely helpful in enhancing communication skills and improving their ability to apply what they had learned in class to solving difficult word problems. In addition, students underscored the importance of pre-recorded videos for their self-paced learning, and synchronous sessions to increase their engagement and motivation. On the other hand, several students perceived flipped classrooms as very demanding and challenging in terms of the required output submissions given the short 6-week term. Overall, the combination of these active-learning methods had a positive impact on the remote-learning environment, but potential drawbacks of online active learning interventions on student attitudes were also present. Therefore, careful integration of these instructional practices into online courses will help improve the students’ learning experience.</span></span></span></p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772823000088","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 1
Abstract
Active learning methods are known to improve motivation, engagement, and student performance in traditional classrooms. However, the COVID-19 pandemic compelled students to continue their studies through an online setting wherein teaching is undertaken remotely and on digital platforms. In this study, the design and implementation of flipped classrooms supported with collaborative learning was evaluated for the remote instruction of Analytical Chemistry. The flipped classroom was designed to include pre-recorded lectures, individual self-assessment questions and in-class group activities (polls and quiz bee). Word problems were given as collaborative tasks to improve the students’ interactions on the learning content. The impact on learning of these instructional practices was evaluated based on students’ learning experience and academic performance, and the instructors’ reflection. The survey at the end of the term gathered quantitative and qualitative data regarding students’ experiences with flipped classroom and peer collaboration methods. The students’ feedback indicated that participation in group collaborative activities had a positive impact on their comprehension of Analytical Chemistry concepts and calculations. Majority of the students indicated that group collaboration was immensely helpful in enhancing communication skills and improving their ability to apply what they had learned in class to solving difficult word problems. In addition, students underscored the importance of pre-recorded videos for their self-paced learning, and synchronous sessions to increase their engagement and motivation. On the other hand, several students perceived flipped classrooms as very demanding and challenging in terms of the required output submissions given the short 6-week term. Overall, the combination of these active-learning methods had a positive impact on the remote-learning environment, but potential drawbacks of online active learning interventions on student attitudes were also present. Therefore, careful integration of these instructional practices into online courses will help improve the students’ learning experience.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning