Jinfang Hu, Hongtai Liu, Wenyuan Ren, Aijun Zhang, Wenjing Mi, Zhichao Liang, Liang Pan, Haobo Xie, Jinwen Han, Tao Yang
{"title":"An experimental study for evaluation of collapsible loess roadbed replacement method using lightweight soil","authors":"Jinfang Hu, Hongtai Liu, Wenyuan Ren, Aijun Zhang, Wenjing Mi, Zhichao Liang, Liang Pan, Haobo Xie, Jinwen Han, Tao Yang","doi":"10.1007/s10064-023-03376-0","DOIUrl":null,"url":null,"abstract":"<div><p>Water is one of the most significant variables that contribute to loess collapse, hence in collapsible loess areas, stringent waterproofing measures are frequently employed to limit loess roadbed collapse. During the construction of roads in sponge city, the roadbed must have natural-like permeability and water retention capacities to assure normal permeation and retention of rainwater. These capacities are contradictory with the collapse of the loess roadbed. This research proposes a collapsible loess roadbed replacement method based on optimized lightweight soil with cotton stalk fibers (LSCF) to overcome this contradiction. The optimization of the LSCF mixture ratio was based on density, unconfined compressive strength, and permeability tests. The optimized LSCF has a low density (1.05 g/cm<sup>3</sup>), sufficient strength (178.43 kPa), and similar permeability to natural loess (4.03 × 10<sup>−6</sup> cm/s). In addition, a method for calculating replacement depth and the corresponding replacement construction processes were developed. Three methods, including theory calculation, centrifugal model test, and practical field demonstration, were used to further evaluate the applicability and effectiveness of the proposed replacement method. Theoretical and experimental results demonstrate that the replacement method effectively reduces the self-weight collapsibility settlement (more than 20%) and maintains good permeability and water retention capacity of the loess site. The research findings provide engineering recommendations for sponge city roadbed treatment in collapsible loess areas.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03376-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water is one of the most significant variables that contribute to loess collapse, hence in collapsible loess areas, stringent waterproofing measures are frequently employed to limit loess roadbed collapse. During the construction of roads in sponge city, the roadbed must have natural-like permeability and water retention capacities to assure normal permeation and retention of rainwater. These capacities are contradictory with the collapse of the loess roadbed. This research proposes a collapsible loess roadbed replacement method based on optimized lightweight soil with cotton stalk fibers (LSCF) to overcome this contradiction. The optimization of the LSCF mixture ratio was based on density, unconfined compressive strength, and permeability tests. The optimized LSCF has a low density (1.05 g/cm3), sufficient strength (178.43 kPa), and similar permeability to natural loess (4.03 × 10−6 cm/s). In addition, a method for calculating replacement depth and the corresponding replacement construction processes were developed. Three methods, including theory calculation, centrifugal model test, and practical field demonstration, were used to further evaluate the applicability and effectiveness of the proposed replacement method. Theoretical and experimental results demonstrate that the replacement method effectively reduces the self-weight collapsibility settlement (more than 20%) and maintains good permeability and water retention capacity of the loess site. The research findings provide engineering recommendations for sponge city roadbed treatment in collapsible loess areas.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.