Efficient seismic data reconstruction based on Geman function minimization

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Yan-Yan Li, Li-Hua Fu, Wen-Ting Cheng, Xiao Niu, Wan-Juan Zhang
{"title":"Efficient seismic data reconstruction based on Geman function minimization","authors":"Yan-Yan Li,&nbsp;Li-Hua Fu,&nbsp;Wen-Ting Cheng,&nbsp;Xiao Niu,&nbsp;Wan-Juan Zhang","doi":"10.1007/s11770-022-0934-6","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic data typically contain random missing traces because of obstacles and economic restrictions, influencing subsequent processing and interpretation. Seismic data recovery can be expressed as a low-rank matrix approximation problem by assuming a low-rank structure for the complete seismic data in the frequency-space (f-<i>x</i>) domain. The nuclear norm minimization (NNM) (sum of singular values) approach treats singular values equally, yielding a solution deviating from the optimal. Further, the log-sum majorization-minimization (LSMM) approach uses the nonconvex log-sum function as a rank substitution for seismic data interpolation, which is highly accurate but time-consuming. Therefore, this study proposes an efficient nonconvex reconstruction model based on the nonconvex Geman function (the nonconvex Geman low-rank (NCGL) model), involving a tighter approximation of the original rank function. Without introducing additional parameters, the nonconvex problem is solved using the Karush-Kuhn-Tucker condition theory. Experiments using synthetic and field data demonstrate that the proposed NCGL approach achieves a higher signal-to-noise ratio than the singular value thresholding method based on NNM and the projection onto convex sets method based on the data-driven threshold model. The proposed approach achieves higher reconstruction efficiency than the singular value thresholding and LSMM methods.</p></div>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"19 2","pages":"185 - 196"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11770-022-0934-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11770-022-0934-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic data typically contain random missing traces because of obstacles and economic restrictions, influencing subsequent processing and interpretation. Seismic data recovery can be expressed as a low-rank matrix approximation problem by assuming a low-rank structure for the complete seismic data in the frequency-space (f-x) domain. The nuclear norm minimization (NNM) (sum of singular values) approach treats singular values equally, yielding a solution deviating from the optimal. Further, the log-sum majorization-minimization (LSMM) approach uses the nonconvex log-sum function as a rank substitution for seismic data interpolation, which is highly accurate but time-consuming. Therefore, this study proposes an efficient nonconvex reconstruction model based on the nonconvex Geman function (the nonconvex Geman low-rank (NCGL) model), involving a tighter approximation of the original rank function. Without introducing additional parameters, the nonconvex problem is solved using the Karush-Kuhn-Tucker condition theory. Experiments using synthetic and field data demonstrate that the proposed NCGL approach achieves a higher signal-to-noise ratio than the singular value thresholding method based on NNM and the projection onto convex sets method based on the data-driven threshold model. The proposed approach achieves higher reconstruction efficiency than the singular value thresholding and LSMM methods.

基于german函数最小化的高效地震数据重建
由于障碍和经济限制,地震数据通常包含随机缺失的痕迹,影响了后续的处理和解释。假设完整地震数据在频率空间(f-x)域中具有低秩结构,则地震数据恢复可以表示为一个低秩矩阵近似问题。核范数最小化(NNM)(奇异值和)方法平等地对待奇异值,产生偏离最优解的解。此外,对数和最大化最小化(LSMM)方法使用非凸对数和函数作为地震数据插值的秩替代,该方法精度高,但耗时长。因此,本研究提出了一种基于非凸german函数的高效非凸重构模型(non - convex german low-rank (NCGL) model),该模型对原始秩函数进行了更严格的逼近。在不引入附加参数的情况下,利用Karush-Kuhn-Tucker条件理论求解非凸问题。实验结果表明,与基于NNM的奇异值阈值方法和基于数据驱动阈值模型的凸集投影方法相比,NCGL方法获得了更高的信噪比。该方法比奇异值阈值法和LSMM法具有更高的重构效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信