Dan Liu, Wei Jiang, B. Cai, O. Heirich, J. Wang, W. Shangguan
{"title":"Robust train localisation method based on advanced map matching measurement-augmented tightly-coupled GNSS/INS with error-state UKF","authors":"Dan Liu, Wei Jiang, B. Cai, O. Heirich, J. Wang, W. Shangguan","doi":"10.1017/S0373463323000097","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"316 - 339"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463323000097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.