Medhat Rehan , Ahmed Alhusays , Ahmed M. Serag , Hasna Boubakri , Petar Pujic , Philippe Normand
{"title":"The cadCA and cadB/DX operons are possibly induced in cadmium resistance mechanism by Frankia alni ACN14a","authors":"Medhat Rehan , Ahmed Alhusays , Ahmed M. Serag , Hasna Boubakri , Petar Pujic , Philippe Normand","doi":"10.1016/j.ejbt.2022.09.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cadmium (Cd<sup>2+</sup>) is one of the highly toxic heavy metals and is considered as a carcinogenic agent. Our aim was to confirm the ability of <em>Frankia alni</em> ACN14a to resist Cd<sup>2+</sup> and to determine the genes involved in the resistance mechanism.</p></div><div><h3>Results</h3><p><em>F. alni</em> ACN14a and <em>Frankia casuarinae</em> CcI3 hyphae showed up to 10 and 22 times Cd<sup>2+</sup> accumulation when exposed to 1 mM Cd<sup>2+</sup>, respectively. Scanning electron microscopy (SEM) exhibited a stable Cd<sup>2+</sup> precipitate on the cell surface, and the increase in Cd<sup>2+</sup> weight level reached 16.45% when evaluated with SEM-EDAX analysis. The following two potential Cd<sup>2+</sup> operons were identified: 1. <em>cadCA</em> operon, which encodes a copper-transporting P-type ATPase A (<em>cadA</em>, FRAAL0989) and an ArsR family regulator (<em>cadC</em>, FRAAL0988), with 37- and 70-fold increase in their expression by qRT-PCR, respectively and 2. <em>cadB/DX,</em> which encodes a putative cobalt-zinc-cadmium resistance protein (<em>cadD</em>, FRAAL3628) and heavy metal-associated domain protein (<em>cadX</em>, FRAAL3626), with 22- and 16-fold upregulation when exposed to Cd<sup>2+</sup> stress.</p></div><div><h3>Conclusions</h3><p>Cd<sup>2+</sup> tolerance by <em>F. alni</em> ACN14a involved efflux of Cd<sup>2+</sup> outside the cells and binding it to the membrane surface. Our results indicate the existence of two cadmium-resistance mechanisms in <em>Frankia</em> strains, which support the idea of using them as a bioremediation agent.</p><p><strong>How to cite:</strong> Rehan M, Alhusays A, Serag AM, et al. The <em>cadCA</em> and <em>cadB/DX</em> operons are possibly induced in cadmium resistance mechanism by <em>Frankia alni</em> ACN14a. Electron J Biotechnol 2022;60. <span>https://doi.org/10.1016/j.ejbt.2022.09.006</span><svg><path></path></svg>.</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"60 ","pages":"Pages 86-96"},"PeriodicalIF":2.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345822000409/pdfft?md5=126f55ecddd43d065841755ac27ec2cf&pid=1-s2.0-S0717345822000409-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345822000409","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Cadmium (Cd2+) is one of the highly toxic heavy metals and is considered as a carcinogenic agent. Our aim was to confirm the ability of Frankia alni ACN14a to resist Cd2+ and to determine the genes involved in the resistance mechanism.
Results
F. alni ACN14a and Frankia casuarinae CcI3 hyphae showed up to 10 and 22 times Cd2+ accumulation when exposed to 1 mM Cd2+, respectively. Scanning electron microscopy (SEM) exhibited a stable Cd2+ precipitate on the cell surface, and the increase in Cd2+ weight level reached 16.45% when evaluated with SEM-EDAX analysis. The following two potential Cd2+ operons were identified: 1. cadCA operon, which encodes a copper-transporting P-type ATPase A (cadA, FRAAL0989) and an ArsR family regulator (cadC, FRAAL0988), with 37- and 70-fold increase in their expression by qRT-PCR, respectively and 2. cadB/DX, which encodes a putative cobalt-zinc-cadmium resistance protein (cadD, FRAAL3628) and heavy metal-associated domain protein (cadX, FRAAL3626), with 22- and 16-fold upregulation when exposed to Cd2+ stress.
Conclusions
Cd2+ tolerance by F. alni ACN14a involved efflux of Cd2+ outside the cells and binding it to the membrane surface. Our results indicate the existence of two cadmium-resistance mechanisms in Frankia strains, which support the idea of using them as a bioremediation agent.
How to cite: Rehan M, Alhusays A, Serag AM, et al. The cadCA and cadB/DX operons are possibly induced in cadmium resistance mechanism by Frankia alni ACN14a. Electron J Biotechnol 2022;60. https://doi.org/10.1016/j.ejbt.2022.09.006.
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering