The role of oxygen in the functioning of the Earth system: past, present and future

IF 0.9 Q3 GEOLOGY
W. Stankowski
{"title":"The role of oxygen in the functioning of the Earth system: past, present and future","authors":"W. Stankowski","doi":"10.14746/logos.2023.29.2.11","DOIUrl":null,"url":null,"abstract":"Abstract In the Solar System, the coming into existence of a peculiar, fully developed atmosphere on Earth was determined by the ‘Great Oxidation Event’ at the turn of the Proterozoic and Palaeozoic. Within about 600 million years, there were large changes in oxygen concentrations in this atmosphere, ranging from 15 to 35 per cent, having been determined by a combination of cosmic-climatic, tectonic-volcanic and biological phenomena. A particular environmental change occurred at the beginning of the 19th century, as a result of the overlap of the end of the natural Little Ice Age and the beginning of anthropogenic warming of the ‘industrial revolution’. According to the author, the rate of human impact on environmental changes is estimated at about 15 per cent. The appearance of mankind brought new changes in the natural environment, including the oxygen content of the air. The current scale of anthropogenic impact justifies the introduction of a new time slice in the planet’s history - the Anthropocene. The functioning of civilisation is conditioned by meeting energy needs, to be implemented by creating a system of energy generators, among which the heat of the Earth should be an important component. The energy generated from this inexhaustible and cost-free geo-resource should be seen as the most ecological among all currently used energy carriers.","PeriodicalId":44833,"journal":{"name":"Geologos","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14746/logos.2023.29.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the Solar System, the coming into existence of a peculiar, fully developed atmosphere on Earth was determined by the ‘Great Oxidation Event’ at the turn of the Proterozoic and Palaeozoic. Within about 600 million years, there were large changes in oxygen concentrations in this atmosphere, ranging from 15 to 35 per cent, having been determined by a combination of cosmic-climatic, tectonic-volcanic and biological phenomena. A particular environmental change occurred at the beginning of the 19th century, as a result of the overlap of the end of the natural Little Ice Age and the beginning of anthropogenic warming of the ‘industrial revolution’. According to the author, the rate of human impact on environmental changes is estimated at about 15 per cent. The appearance of mankind brought new changes in the natural environment, including the oxygen content of the air. The current scale of anthropogenic impact justifies the introduction of a new time slice in the planet’s history - the Anthropocene. The functioning of civilisation is conditioned by meeting energy needs, to be implemented by creating a system of energy generators, among which the heat of the Earth should be an important component. The energy generated from this inexhaustible and cost-free geo-resource should be seen as the most ecological among all currently used energy carriers.
氧气在地球系统运作中的作用:过去、现在和未来
摘要在太阳系中,地球上一个特殊的、完全发育的大气层的存在是由元古代和古生代之交的“大氧化事件”决定的。在大约6亿年内,大气中的氧气浓度发生了巨大变化,变化幅度从15%到35%不等,这是由宇宙气候、构造火山和生物现象共同决定的。19世纪初,由于自然小冰河时代的结束和“工业革命”的人为变暖的开始,出现了一个特殊的环境变化。据提交人称,人类对环境变化的影响率估计约为15%。人类的出现给自然环境带来了新的变化,包括空气中的含氧量。目前人类活动影响的规模证明了在地球历史上引入一个新的时间片——人类世是合理的。文明的运作是以满足能源需求为条件的,而要通过创建一个能源发电机系统来实现,地球的热量应该是其中的一个重要组成部分。这种取之不尽用之不竭、无成本的地球资源所产生的能源应该被视为目前使用的所有能源载体中最生态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geologos
Geologos GEOLOGY-
CiteScore
1.70
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信