Petrological and geochemical features of gabbros and fine-grained mafic rocks (mafic microgranular enclaves; MMEs) in the Inagawa Granite of the Ryoke Plutonic Complex were investigated to assess the interactions between coexisting mafic and silicic magmas, and the petrogenetic relationships between the MMEs and surrounding gabbros. The MMEs exhibit mingling textures that imply the coexistence of mafic and silicic magmas that did not undergo complete mixing, but the geochemical compositions of the MMEs require substantial hybridization and homogenization. The gabbroic rocks exhibit disequilibrium textures and mineral compositions, such as quartz–hornblende ocellar textures and patchy plagioclase crystals with bimodal anorthite contents. These textures and compositions record an abrupt decrease in crystallization temperature and mechanical mixing between crystallizing gabbroic mush and silicic (granitic) melt. Geochemical variations of the gabbroic rocks can be explained by hybridization and fractional crystallization (HFC) processes between crystallizing gabbroic mush and granitic melt. Extrapolation of the mixing trend to a basaltic composition suggests that the primitive mafic end-member was a low-K basaltic magma. Given that HFC yields magnesian andesite by the addition of a small amount of silicic melt to a primitive mafic end-member, the compositional modification of mafic magmas by magma mixing might be an essential process in the formation of andesitic magma in arc crust.