Zolpidem Profoundly Augments Spared Tonic GABAAR Signaling in Dentate Granule Cells Ipsilateral to Controlled Cortical Impact Brain Injury in Mice

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Jeffery A. Boychuk, Corwin R. Butler, K. C. Smith, Miklós B. Halmos, Bret N. Smith
{"title":"Zolpidem Profoundly Augments Spared Tonic GABAAR Signaling in Dentate Granule Cells Ipsilateral to Controlled Cortical Impact Brain Injury in Mice","authors":"Jeffery A. Boychuk, Corwin R. Butler, K. C. Smith, Miklós B. Halmos, Bret N. Smith","doi":"10.3389/fnsys.2022.867323","DOIUrl":null,"url":null,"abstract":"Type A GABA receptors (GABAARs) are pentameric combinations of protein subunits that give rise to tonic (ITonicGABA) and phasic (i.e., synaptic; ISynapticGABA) forms of inhibitory GABAAR signaling in the central nervous system. Remodeling and regulation of GABAAR protein subunits are implicated in a wide variety of healthy and injury-dependent states, including epilepsy. The present study undertook a detailed analysis of GABAAR signaling using whole-cell patch clamp recordings from mouse dentate granule cells (DGCs) in coronal slices containing dorsal hippocampus at 1–2 or 8–13 weeks after a focal, controlled cortical impact (CCI) or sham brain injury. Zolpidem, a benzodiazepine-like positive modulator of GABAARs, was used to test for changes in GABAAR signaling of DGCs due to its selectivity for α1 subunit-containing GABAARs. Electric charge transfer and statistical percent change were analyzed in order to directly compare tonic and phasic GABAAR signaling and to account for zolpidem’s ability to modify multiple parameters of GABAAR kinetics. We observed that baseline ITonicGABA is preserved at both time-points tested in DGCs ipsilateral to injury (Ipsi-DGCs) compared to DGCs contralateral to injury (Contra-DGCs) or after sham injury (Sham-DGCs). Interestingly, application of zolpidem resulted in modulation of ITonicGABA across groups, with Ipsi-DGCs exhibiting the greatest responsiveness to zolpidem. We also report that the combination of CCI and acute application of zolpidem profoundly augments the proportion of GABAAR charge transfer mediated by tonic vs. synaptic currents at both time-points tested, whereas gene expression of GABAAR α1, α2, α3, and γ2 subunits is unchanged at 8–13 weeks post-injury. Overall, this work highlights the shift toward elevated influence of tonic inhibition in Ipsi-DGCs, the impact of zolpidem on all components of inhibitory control of DGCs, and the sustained nature of these changes in inhibitory tone after CCI injury.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2022.867323","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Type A GABA receptors (GABAARs) are pentameric combinations of protein subunits that give rise to tonic (ITonicGABA) and phasic (i.e., synaptic; ISynapticGABA) forms of inhibitory GABAAR signaling in the central nervous system. Remodeling and regulation of GABAAR protein subunits are implicated in a wide variety of healthy and injury-dependent states, including epilepsy. The present study undertook a detailed analysis of GABAAR signaling using whole-cell patch clamp recordings from mouse dentate granule cells (DGCs) in coronal slices containing dorsal hippocampus at 1–2 or 8–13 weeks after a focal, controlled cortical impact (CCI) or sham brain injury. Zolpidem, a benzodiazepine-like positive modulator of GABAARs, was used to test for changes in GABAAR signaling of DGCs due to its selectivity for α1 subunit-containing GABAARs. Electric charge transfer and statistical percent change were analyzed in order to directly compare tonic and phasic GABAAR signaling and to account for zolpidem’s ability to modify multiple parameters of GABAAR kinetics. We observed that baseline ITonicGABA is preserved at both time-points tested in DGCs ipsilateral to injury (Ipsi-DGCs) compared to DGCs contralateral to injury (Contra-DGCs) or after sham injury (Sham-DGCs). Interestingly, application of zolpidem resulted in modulation of ITonicGABA across groups, with Ipsi-DGCs exhibiting the greatest responsiveness to zolpidem. We also report that the combination of CCI and acute application of zolpidem profoundly augments the proportion of GABAAR charge transfer mediated by tonic vs. synaptic currents at both time-points tested, whereas gene expression of GABAAR α1, α2, α3, and γ2 subunits is unchanged at 8–13 weeks post-injury. Overall, this work highlights the shift toward elevated influence of tonic inhibition in Ipsi-DGCs, the impact of zolpidem on all components of inhibitory control of DGCs, and the sustained nature of these changes in inhibitory tone after CCI injury.
唑吡坦对小鼠控制皮质撞击性脑损伤同侧齿状颗粒细胞中GABAAR信号的显著增强
A型GABA受体(GABAAR)是蛋白质亚基的五聚体组合,在中枢神经系统中产生紧张性(ITonicGABA)和阶段性(即突触;ISynapticGABA)形式的抑制性GABAAR信号。GABAAR蛋白亚基的重塑和调节涉及多种健康和损伤依赖状态,包括癫痫。本研究使用小鼠齿状颗粒细胞(DGCs)的全细胞膜片钳记录,在局灶性受控皮层撞击(CCI)或假脑损伤后1-2或8-13周,对GABAAR信号进行了详细分析。唑吡坦是一种GABAARs的苯二氮卓类阳性调节剂,由于其对含有α1亚基的GABAARs的选择性,因此用于测试DGCs的GABAAR信号的变化。分析了电荷转移和统计百分比变化,以直接比较强直性和阶段性GABAAR信号传导,并说明唑吡坦改变GABAAR动力学多个参数的能力。我们观察到,与损伤对侧DGCs(Contra DGCs)或假损伤后DGCs(sham DGCs)相比,在损伤同侧DGCs中测试的两个时间点,基线ITonicGABA都得到了保留。有趣的是,唑吡坦的应用导致跨组ITonicGABA的调节,Ipsi DGCs对唑吡坦表现出最大的反应性。我们还报道,在两个测试时间点,CCI和唑吡坦急性应用的结合显著增加了由紧张电流与突触电流介导的GABAAR电荷转移的比例,而GABAARα1、α2、α3和γ2亚基的基因表达在损伤后8-13周没有变化。总的来说,这项工作强调了Ipsi DGCs中紧张抑制作用的增强影响的转变,唑吡坦对DGCs抑制控制的所有成分的影响,以及CCI损伤后这些抑制音调变化的持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信