A Search for Diastatic Enzymes Endogenous to Humulus lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer
IF 1.3 4区 农林科学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"A Search for Diastatic Enzymes Endogenous to Humulus lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer","authors":"M. Cottrell","doi":"10.1080/03610470.2022.2084327","DOIUrl":null,"url":null,"abstract":"Abstract A search was conducted for the sources of diastatic enzymes driving the over attenuation and continued fermentation of dry hopped beer known as “hop creep”. Microbial cultivation using starch containing media and assays of amylase enzyme activity were used to isolate and identify microbes from pellet hops that are potential sources of amylases associated with but exogenous to hops (Humulus lupulus). Bacteria and fungi associated with pellet hops produced amylases but did not produce hop creep in assays using finished beer and fermenting wort with added microbes. Cannabis sativa flower produced over attenuation of fermenting wort equivalent to that seen with hops. Comparative bioinformatic analysis of the Cannabis sativa proteome and H. lupulus genome revealed the genetic potential of H. lupulus to produce endogenous amylase enzymes. Sequence similarity of amylases annotated in the C. sativa proteome to previously unidentified genes in H. lupulus revealed 13 genes likely encoding amylases. PCR and sequencing confirmed the occurrence of genes that appear to encode α-amylase and β-amylase in the Citra® hop cultivar. Identifying a genetic basis for hop creep contributes knowledge that may lead to new approaches for controlling hop creep produced by endogenous amylases of H. lupulus.","PeriodicalId":17225,"journal":{"name":"Journal of the American Society of Brewing Chemists","volume":"81 1","pages":"435 - 447"},"PeriodicalIF":1.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society of Brewing Chemists","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03610470.2022.2084327","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract A search was conducted for the sources of diastatic enzymes driving the over attenuation and continued fermentation of dry hopped beer known as “hop creep”. Microbial cultivation using starch containing media and assays of amylase enzyme activity were used to isolate and identify microbes from pellet hops that are potential sources of amylases associated with but exogenous to hops (Humulus lupulus). Bacteria and fungi associated with pellet hops produced amylases but did not produce hop creep in assays using finished beer and fermenting wort with added microbes. Cannabis sativa flower produced over attenuation of fermenting wort equivalent to that seen with hops. Comparative bioinformatic analysis of the Cannabis sativa proteome and H. lupulus genome revealed the genetic potential of H. lupulus to produce endogenous amylase enzymes. Sequence similarity of amylases annotated in the C. sativa proteome to previously unidentified genes in H. lupulus revealed 13 genes likely encoding amylases. PCR and sequencing confirmed the occurrence of genes that appear to encode α-amylase and β-amylase in the Citra® hop cultivar. Identifying a genetic basis for hop creep contributes knowledge that may lead to new approaches for controlling hop creep produced by endogenous amylases of H. lupulus.
期刊介绍:
The Journal of the American Society of Brewing Chemists publishes scientific papers, review articles, and technical reports pertaining to the chemistry, microbiology, and technology of brewing and distilling, as well as the analytical techniques used in the malting, brewing, and distilling industries.