Investigating the impact of structural and temporal behaviors in Ethereum phishing users detection

IF 6.9 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Medhasree Ghosh , Dyuti Ghosh , Raju Halder , Joydeep Chandra
{"title":"Investigating the impact of structural and temporal behaviors in Ethereum phishing users detection","authors":"Medhasree Ghosh ,&nbsp;Dyuti Ghosh ,&nbsp;Raju Halder ,&nbsp;Joydeep Chandra","doi":"10.1016/j.bcra.2023.100153","DOIUrl":null,"url":null,"abstract":"<div><p>The recent surge of Ethereum in prominence has made it an attractive target for various kinds of crypto crimes. Phishing scams, for example, are an increasingly prevalent cybercrime in which malicious users attempt to steal funds from a user's crypto wallet. This research investigates the effects of network architectural features as well as the temporal aspects of user activities on the performance of detecting phishing users on the Ethereum transaction network. We employ traditional machine learning algorithms to evaluate our model on real-world Ethereum transaction data. The experimental results demonstrate that our proposed features identify phishing accounts efficiently and outperform the baseline models by 4% in Recall and 5% in F1-score.</p></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"4 4","pages":"Article 100153"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096720923000283/pdfft?md5=50e4e3c3baf2b450bd9efc03570baefa&pid=1-s2.0-S2096720923000283-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720923000283","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The recent surge of Ethereum in prominence has made it an attractive target for various kinds of crypto crimes. Phishing scams, for example, are an increasingly prevalent cybercrime in which malicious users attempt to steal funds from a user's crypto wallet. This research investigates the effects of network architectural features as well as the temporal aspects of user activities on the performance of detecting phishing users on the Ethereum transaction network. We employ traditional machine learning algorithms to evaluate our model on real-world Ethereum transaction data. The experimental results demonstrate that our proposed features identify phishing accounts efficiently and outperform the baseline models by 4% in Recall and 5% in F1-score.

研究结构和时间行为对以太坊网络钓鱼用户检测的影响
最近,以太坊的地位急剧上升,使其成为各种加密货币犯罪的目标。例如,网络钓鱼诈骗是一种日益猖獗的网络犯罪,恶意用户试图从用户的加密货币钱包中窃取资金。本研究调查了网络架构特征以及用户活动的时间方面对以太坊交易网络上检测网络钓鱼用户性能的影响。我们采用传统的机器学习算法,在真实的以太坊交易数据上评估我们的模型。实验结果表明,我们提出的特征能有效识别钓鱼账户,并且在召回率和 F1 分数上分别比基线模型高出 4% 和 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信