U-Net: A deep-learning method for improving summer precipitation forecasts in China

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Qimin Deng , Peirong Lu , Shuyun Zhao , Naiming Yuan
{"title":"U-Net: A deep-learning method for improving summer precipitation forecasts in China","authors":"Qimin Deng ,&nbsp;Peirong Lu ,&nbsp;Shuyun Zhao ,&nbsp;Naiming Yuan","doi":"10.1016/j.aosl.2022.100322","DOIUrl":null,"url":null,"abstract":"<div><p>A deep-learning method named U-Net was applied to improve the skill in forecasting summer (June–August) precipitation for at a one-month lead during the period 1981–2020 in China. The variables of geopotential height, soil moisture, sea level pressure, sea surface temperature, ocean salinity, and snow were considered as the model input to revise the seasonal prediction of the Climate Forecast System, version 2 (CFSv2). Results showed that on average U-Net reduced the root-mean-square error of the original CFSv2 prediction by 49.7% and 42.7% for the validation and testing set, respectively. The most improved areas were Northwest, Southwest, and Southeast China. The anomaly same sign percentages and temporal and spatial correlation coefficients did not present significant improvement but maintained the comparable performances of CFSv2. Sensitivity experiments showed that soil moisture is the most crucial factor in predicting summer rainfall in China, followed by geopotential height. Due to its advantages in handling small training dataset sizes, U-Net is a promising deep-learning method for seasonal rainfall prediction.</p><p>摘要</p><p>本研究应用了名为U-Net的深度学习方法来提高中国夏季 (6–8月) 降水的预报技能, 预报时段为1981–2020年, 预报提前期为一个月. 将位势高度场, 土壤湿度, 海平面气压, 海表面温度, 海洋盐度和青藏高原积雪等变量作为模型输入, 本文对美国NCAR气候预报系统第2版 (CFSv2) 的季节性预报结果进行了修正. 结果显示, 在验证集和测试集上, U-Net平均将原CFSv2预测的均方根误差分别减少了49.7%和42.7%. 预报结果改善最大的地区是中国的西北,西南和东南地区. 然而, 同号率和时空相关系数没有得到明显改善, 但仍与CFSv2的预测技巧持平. 敏感性实验表明, 土壤湿度是预测中国夏季降雨的最关键因素, 其次是位势高度场. 本研究显示了U-Net模型在训练小样本数据集方面的优势, 为我国汛期季节性降雨预测提供了一种有效的深度学习方法.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 4","pages":"Article 100322"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283422002100","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

A deep-learning method named U-Net was applied to improve the skill in forecasting summer (June–August) precipitation for at a one-month lead during the period 1981–2020 in China. The variables of geopotential height, soil moisture, sea level pressure, sea surface temperature, ocean salinity, and snow were considered as the model input to revise the seasonal prediction of the Climate Forecast System, version 2 (CFSv2). Results showed that on average U-Net reduced the root-mean-square error of the original CFSv2 prediction by 49.7% and 42.7% for the validation and testing set, respectively. The most improved areas were Northwest, Southwest, and Southeast China. The anomaly same sign percentages and temporal and spatial correlation coefficients did not present significant improvement but maintained the comparable performances of CFSv2. Sensitivity experiments showed that soil moisture is the most crucial factor in predicting summer rainfall in China, followed by geopotential height. Due to its advantages in handling small training dataset sizes, U-Net is a promising deep-learning method for seasonal rainfall prediction.

摘要

本研究应用了名为U-Net的深度学习方法来提高中国夏季 (6–8月) 降水的预报技能, 预报时段为1981–2020年, 预报提前期为一个月. 将位势高度场, 土壤湿度, 海平面气压, 海表面温度, 海洋盐度和青藏高原积雪等变量作为模型输入, 本文对美国NCAR气候预报系统第2版 (CFSv2) 的季节性预报结果进行了修正. 结果显示, 在验证集和测试集上, U-Net平均将原CFSv2预测的均方根误差分别减少了49.7%和42.7%. 预报结果改善最大的地区是中国的西北,西南和东南地区. 然而, 同号率和时空相关系数没有得到明显改善, 但仍与CFSv2的预测技巧持平. 敏感性实验表明, 土壤湿度是预测中国夏季降雨的最关键因素, 其次是位势高度场. 本研究显示了U-Net模型在训练小样本数据集方面的优势, 为我国汛期季节性降雨预测提供了一种有效的深度学习方法.

U-Net:改进中国夏季降水预报的深度学习方法
采用U-Net深度学习方法,提高了1981-2020年中国夏季(6 - 8月)降水超前1个月的预测能力。以位势高度、土壤湿度、海平面压力、海表温度、海洋盐度和雪量为模型输入,对气候预报系统第2版(CFSv2)的季节预报进行修正。结果表明,在验证集和测试集上,U-Net平均将原始CFSv2预测的均方根误差分别降低了49.7%和42.7%。改善最大的地区是西北、西南和东南。异常同符号百分比和时空相关系数没有明显改善,但保持了CFSv2的可比性能。敏感性试验表明,土壤湿度是预测中国夏季降水的最关键因子,其次是位势高度。由于其在处理小型训练数据集方面的优势,U-Net是一种很有前途的季节性降雨预测深度学习方法。摘要本研究应用了名为U-Net的深度学习方法来提高中国夏季(6 - 8月)降水的预报技能,预报时段为1981 - 2020年,预报提前期为一个月。将位势高度场,土壤湿度,海平面气压,海表面温度,海洋盐度和青藏高原积雪等变量作为模型输入,本文对美国NCAR气候预报系统第2版(CFSv2)的季节性预报结果进行了修正。结果显示,在验证集和测试集上,U-Net平均将原CFSv2预测的均方根误差分别减少了49.7%和42.7%。预报结果改善最大的地区是中国的西北,西南和东南地区. 笨笨,笨笨,笨笨,笨笨,笨笨,笨笨。敏感性实验表明, 土壤湿度是预测中国夏季降雨的最关键因素, 其次是位势高度场. 本研究显示了U-Net模型在训练小样本数据集方面的优势,为我国汛期季节性降雨预测提供了一种有效的深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信