Random subcomplexes of finite buildings, and fibering of commutator subgroups of right-angled Coxeter groups

Pub Date : 2023-01-06 DOI:10.1112/topo.12278
Eduard Schesler, Matthew C. B. Zaremsky
{"title":"Random subcomplexes of finite buildings, and fibering of commutator subgroups of right-angled Coxeter groups","authors":"Eduard Schesler,&nbsp;Matthew C. B. Zaremsky","doi":"10.1112/topo.12278","DOIUrl":null,"url":null,"abstract":"<p>The main theme of this paper is higher virtual algebraic fibering properties of right-angled Coxeter groups (RACGs), with a special focus on those whose defining flag complex is a finite building. We prove for particular classes of finite buildings that their random induced subcomplexes have a number of strong properties, most prominently that they are highly connected. From this we are able to deduce that the commutator subgroup of a RACG, with defining flag complex a finite building of a certain type, admits an epimorphism to <math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathbb {Z}$</annotation>\n </semantics></math> whose kernel has strong topological finiteness properties. We additionally use our techniques to present examples where the kernel is of type <math>\n <semantics>\n <msub>\n <mo>F</mo>\n <mn>2</mn>\n </msub>\n <annotation>$\\operatorname{F}_2$</annotation>\n </semantics></math> but not <math>\n <semantics>\n <msub>\n <mo>FP</mo>\n <mn>3</mn>\n </msub>\n <annotation>$\\operatorname{FP}_3$</annotation>\n </semantics></math>, and examples where the RACG is hyperbolic and the kernel is finitely generated and non-hyperbolic. The key tool we use is a generalization of an approach due to Jankiewicz–Norin–Wise involving Bestvina–Brady discrete Morse theory applied to the Davis complex of a RACG, together with some probabilistic arguments.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The main theme of this paper is higher virtual algebraic fibering properties of right-angled Coxeter groups (RACGs), with a special focus on those whose defining flag complex is a finite building. We prove for particular classes of finite buildings that their random induced subcomplexes have a number of strong properties, most prominently that they are highly connected. From this we are able to deduce that the commutator subgroup of a RACG, with defining flag complex a finite building of a certain type, admits an epimorphism to Z $\mathbb {Z}$ whose kernel has strong topological finiteness properties. We additionally use our techniques to present examples where the kernel is of type F 2 $\operatorname{F}_2$ but not FP 3 $\operatorname{FP}_3$ , and examples where the RACG is hyperbolic and the kernel is finitely generated and non-hyperbolic. The key tool we use is a generalization of an approach due to Jankiewicz–Norin–Wise involving Bestvina–Brady discrete Morse theory applied to the Davis complex of a RACG, together with some probabilistic arguments.

分享
查看原文
有限建筑物的随机子复合体和直角Coxeter群的换向子群的纤维化
本文主要研究了直角Coxeter群(racg)的高虚代数纤维性质,特别关注了那些定义标志复合体为有限结构的群。我们证明了特定类别的有限建筑物,它们的随机诱导子复合物具有许多强性质,最突出的是它们是高度连接的。由此,我们可以推导出定义标志复合体为某类型有限构造的RACG的换易子群对Z$\mathbb {Z}$的上胚,其核具有强拓扑有限性。我们还使用我们的技术给出了内核类型为F2$\operatorname{F}_2$而不是FP3$\operatorname{FP}_3$的例子,以及RACG是双曲的并且内核是有限生成的非双曲的例子。我们使用的关键工具是由Jankiewicz-Norin-Wise提出的一种方法的推广,该方法涉及将Bestvina-Brady离散Morse理论应用于RACG的Davis复形,以及一些概率参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信