Md. Asraful Alam, Chun Wan, Dang Thuan Tran, M. Mofijur, Shams Forruque Ahmed, Muhammad Aamer Mehmood, Feroz Shaik, Dai-Viet N. Vo, Jingliang Xu
{"title":"Microalgae binary culture for higher biomass production, nutrients recycling, and efficient harvesting: a review","authors":"Md. Asraful Alam, Chun Wan, Dang Thuan Tran, M. Mofijur, Shams Forruque Ahmed, Muhammad Aamer Mehmood, Feroz Shaik, Dai-Viet N. Vo, Jingliang Xu","doi":"10.1007/s10311-021-01363-z","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae are photosynthetic cell factories of global interest for fuels, food, feed, bioproducts, carbon sequestration, waste mitigation, and environmental remediation. Actually, microalgal monocultures are used for biomass production and pollutant removal, yet are limited by moderate production and contaminations. Here we review binary cultures of autotrophic microalgae with bacteria, yeast, fungi, and heterotrophic microalgae, with focus on growth, lipid accumulation, bioremediation, wastewater treatment, and cost-effective harvesting. We found that a controlled, symbiotic binary culture facilitates waste bioremediation and biomass harvesting, with 96% efficiency, and reduces cost by 20–30%. Noteworthy, in binary or polyculture systems, autotrophic microalgae often develop a symbiosis by exchanging nutrients and metabolites with heterotrophic microalgae, bacteria, yeast, fungi, which may help to achieve higher biomass production.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"20 2","pages":"1153 - 1168"},"PeriodicalIF":15.0000,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-021-01363-z.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-021-01363-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
Microalgae are photosynthetic cell factories of global interest for fuels, food, feed, bioproducts, carbon sequestration, waste mitigation, and environmental remediation. Actually, microalgal monocultures are used for biomass production and pollutant removal, yet are limited by moderate production and contaminations. Here we review binary cultures of autotrophic microalgae with bacteria, yeast, fungi, and heterotrophic microalgae, with focus on growth, lipid accumulation, bioremediation, wastewater treatment, and cost-effective harvesting. We found that a controlled, symbiotic binary culture facilitates waste bioremediation and biomass harvesting, with 96% efficiency, and reduces cost by 20–30%. Noteworthy, in binary or polyculture systems, autotrophic microalgae often develop a symbiosis by exchanging nutrients and metabolites with heterotrophic microalgae, bacteria, yeast, fungi, which may help to achieve higher biomass production.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.