{"title":"Mitigating Timing-Based NoC Side-Channel Attacks With LLC Remapping","authors":"Anurag Kar;Xueyang Liu;Yonghae Kim;Gururaj Saileshwar;Hyesoon Kim;Tushar Krishna","doi":"10.1109/LCA.2023.3276709","DOIUrl":null,"url":null,"abstract":"Recent CPU microarchitectural attacks utilize contention over the NoC to mount covert and side-channel attacks on multicore CPUs and leak information from victim applications. We propose NoIR, a dynamic LLC slice selection mechanism using slice remapping to obfuscate interconnect contention patterns. NoIR reduces contention variance by 92.18% and mean IPC degradation due to cache invalidation is limited to 7.38% for SPEC CPU 2017 benchmarks for a 1000-access threshold. While previous defenses focused on redesigning the NoC and routing algorithms, we show that a top-down system-level approach can significantly raise the bar for a NoC security vulnerability with minimal modifications to the NoC hardware.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 1","pages":"53-56"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10124988/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent CPU microarchitectural attacks utilize contention over the NoC to mount covert and side-channel attacks on multicore CPUs and leak information from victim applications. We propose NoIR, a dynamic LLC slice selection mechanism using slice remapping to obfuscate interconnect contention patterns. NoIR reduces contention variance by 92.18% and mean IPC degradation due to cache invalidation is limited to 7.38% for SPEC CPU 2017 benchmarks for a 1000-access threshold. While previous defenses focused on redesigning the NoC and routing algorithms, we show that a top-down system-level approach can significantly raise the bar for a NoC security vulnerability with minimal modifications to the NoC hardware.
最近的CPU微体系结构攻击利用对NoC的争用对多核CPU发起隐蔽和侧通道攻击,并从受害应用程序泄漏信息。我们提出了NoIR,这是一种动态LLC片选择机制,使用片重映射来模糊互连争用模式。对于1000访问阈值的SPEC CPU 2017基准测试,NoIR将争用方差降低了92.18%,并且由于缓存无效导致的平均IPC降级限制在7.38%。虽然之前的防御侧重于重新设计NoC和路由算法,但我们表明,自上而下的系统级方法可以在对NoC硬件进行最小修改的情况下显著提高NoC安全漏洞的门槛。
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.