A Combinatorial Approach to the Number of Solutions of Systems of Homogeneous Polynomial Equations over Finite Fields

Peter Beelen, M. Datta, S. Ghorpade
{"title":"A Combinatorial Approach to the Number of Solutions of Systems of Homogeneous Polynomial Equations over Finite Fields","authors":"Peter Beelen, M. Datta, S. Ghorpade","doi":"10.17323/1609-4514-2022-22-4-565-593","DOIUrl":null,"url":null,"abstract":"We give a complete conjectural formula for the number $e_r(d,m)$ of maximum possible ${\\mathbb{F}}q$-rational points on a projective algebraic variety defined by $r$ linearly independent homogeneous polynomial equations of degree $d$ in $m+1$ variables with coefficients in the finite field ${\\mathbb{F}}q$ with $q$ elements, when $d<q$. It is shown that this formula holds in the affirmative for several values of $r$. In the general case, we give explicit lower and upper bounds for $e_r(d,m)$ and show that they are sometimes attained. Our approach uses a relatively recent result, called the projective footprint bound, together with results from extremal combinatorics such as the Clements-Lindstr\\\"om Theorem and its variants. Applications to the problem of determining the generalized Hamming weights of projective Reed-Muller codes are also included.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2022-22-4-565-593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We give a complete conjectural formula for the number $e_r(d,m)$ of maximum possible ${\mathbb{F}}q$-rational points on a projective algebraic variety defined by $r$ linearly independent homogeneous polynomial equations of degree $d$ in $m+1$ variables with coefficients in the finite field ${\mathbb{F}}q$ with $q$ elements, when $d
分享
查看原文
有限域上齐次多项式方程组解个数的组合方法
当$d<q$时,我们给出了由$m+1$变量中的$r$次线性独立齐次多项式方程定义的投影代数簇上最大可能${\mathbb{F}}q$有理点的数目$e_r(d,m)$的一个完整的猜想公式,该方程具有$q$元素,在有限域中具有系数。结果表明,对于$r$的几个值,这个公式是肯定的。在一般情况下,我们给出了$e_r(d,m)$的显式下界和上界,并证明了它们有时是达到的。我们的方法使用了一个相对较新的结果,称为投影足迹界,以及极值组合学的结果,如Clements-Lindstr\“om定理及其变体。还包括在确定投影Reed-Muller码的广义Hamming权问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信