Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices

IF 9.9 2区 材料科学 Q1 Engineering
Zhen-Hua Tang , Wei-Bin Zhu , Jun-Zhang Chen , Yuan-Qing Li , Pei Huang , Kin Liao , Shao-Yun Fu
{"title":"Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices","authors":"Zhen-Hua Tang ,&nbsp;Wei-Bin Zhu ,&nbsp;Jun-Zhang Chen ,&nbsp;Yuan-Qing Li ,&nbsp;Pei Huang ,&nbsp;Kin Liao ,&nbsp;Shao-Yun Fu","doi":"10.1016/j.nanoms.2021.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Multifunctional and flexible wearable devices play a crucial role in a wide range of applications, such as heath monitoring, intelligent skins, and human-machine interactions. Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable. Here, a conductive graphene/microsphere/bamboo fiber (GMB) nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process. The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of ∼45 ​S/m but also an excellent electrical stability (i.e., relative changes in resistance are less than 3% under stretching, folding, and compressing loadings) due to its unique structure features. With this microstructured nanocomposite paper as active sensing layer, microstructured pressure sensors with a high sensitivity (−4 ​kPa<sup>−1</sup>), a wide sensing range (0–5 ​kPa), and a rapid response time (about 140 ​ms) are realized. In addition, benefitting from the outstanding electrical stability and mechanical flexibility, the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device. The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80 ​°C when applying a relatively low voltage of 7 ​V, indicating its potential in human thermotherapy and thermal management.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 3","pages":"Pages 319-328"},"PeriodicalIF":9.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965121000921","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

Multifunctional and flexible wearable devices play a crucial role in a wide range of applications, such as heath monitoring, intelligent skins, and human-machine interactions. Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable. Here, a conductive graphene/microsphere/bamboo fiber (GMB) nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process. The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of ∼45 ​S/m but also an excellent electrical stability (i.e., relative changes in resistance are less than 3% under stretching, folding, and compressing loadings) due to its unique structure features. With this microstructured nanocomposite paper as active sensing layer, microstructured pressure sensors with a high sensitivity (−4 ​kPa−1), a wide sensing range (0–5 ​kPa), and a rapid response time (about 140 ​ms) are realized. In addition, benefitting from the outstanding electrical stability and mechanical flexibility, the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device. The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80 ​°C when applying a relatively low voltage of 7 ​V, indicating its potential in human thermotherapy and thermal management.

用于多功能可穿戴设备的具有分层微观结构的柔性和电稳定性石墨烯基纳米复合纸
多功能、灵活的可穿戴设备在健康监测、智能皮肤和人机交互等广泛应用中发挥着至关重要的作用。以低成本和高效率的方法开发用于多功能可穿戴设备的柔性和导电材料是非常可取的。本文通过简单的真空辅助过滤和热发泡工艺,成功制备了具有分级表面微观结构的导电石墨烯/微球/竹纤维(GMB)纳米复合纸。所制备的微结构GMB纳米复合纸不仅表现出~45的高体积电导率​S/m,但由于其独特的结构特征,还具有优异的电稳定性(即,在拉伸、折叠和压缩载荷下,电阻的相对变化小于3%)。利用这种微结构纳米复合纸作为活性传感层,微结构压力传感器具有高灵敏度(−4​kPa−1),感应范围宽(0–5​kPa)和快速响应时间(约140​ms)。此外,得益于优异的电稳定性和机械灵活性,微结构纳米复合纸被进一步证明是一种低压焦耳加热装置。微结构纳米复合纸的表面温度迅速达到80以上​施加7的相对较低电压时为°C​V、 表明其在人类热疗和热管理中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信