Zhen-Hua Tang , Wei-Bin Zhu , Jun-Zhang Chen , Yuan-Qing Li , Pei Huang , Kin Liao , Shao-Yun Fu
{"title":"Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices","authors":"Zhen-Hua Tang , Wei-Bin Zhu , Jun-Zhang Chen , Yuan-Qing Li , Pei Huang , Kin Liao , Shao-Yun Fu","doi":"10.1016/j.nanoms.2021.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Multifunctional and flexible wearable devices play a crucial role in a wide range of applications, such as heath monitoring, intelligent skins, and human-machine interactions. Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable. Here, a conductive graphene/microsphere/bamboo fiber (GMB) nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process. The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of ∼45 S/m but also an excellent electrical stability (i.e., relative changes in resistance are less than 3% under stretching, folding, and compressing loadings) due to its unique structure features. With this microstructured nanocomposite paper as active sensing layer, microstructured pressure sensors with a high sensitivity (−4 kPa<sup>−1</sup>), a wide sensing range (0–5 kPa), and a rapid response time (about 140 ms) are realized. In addition, benefitting from the outstanding electrical stability and mechanical flexibility, the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device. The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80 °C when applying a relatively low voltage of 7 V, indicating its potential in human thermotherapy and thermal management.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 3","pages":"Pages 319-328"},"PeriodicalIF":9.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965121000921","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5
Abstract
Multifunctional and flexible wearable devices play a crucial role in a wide range of applications, such as heath monitoring, intelligent skins, and human-machine interactions. Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable. Here, a conductive graphene/microsphere/bamboo fiber (GMB) nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process. The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of ∼45 S/m but also an excellent electrical stability (i.e., relative changes in resistance are less than 3% under stretching, folding, and compressing loadings) due to its unique structure features. With this microstructured nanocomposite paper as active sensing layer, microstructured pressure sensors with a high sensitivity (−4 kPa−1), a wide sensing range (0–5 kPa), and a rapid response time (about 140 ms) are realized. In addition, benefitting from the outstanding electrical stability and mechanical flexibility, the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device. The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80 °C when applying a relatively low voltage of 7 V, indicating its potential in human thermotherapy and thermal management.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.