{"title":"Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers","authors":"Vsevolod V. Gurevich, Eugenia V. Gurevich","doi":"10.1007/s00723-023-01561-8","DOIUrl":null,"url":null,"abstract":"<div><p>Proteins and their complexes in structures solved by X-ray crystallography or cryo-EM look rigid. While these structures yield very detailed information, they do not capture critically important property of proteins, their dynamic nature. The very fact that proteins function indicates that they must have moving parts. Structural studies have additional caveats: to obtain structures, proteins are often drastically engineered and placed into highly non-physiological conditions. In contrast to structural studies, biophysical methods, such as EPR and NMR spectroscopy, reveal protein and complex dynamics. Importantly, minimally mutated, virtually wild-type proteins can be used. Here, this issue is discussed using GPCRs and their signal transducers, G proteins and arrestins, as examples. To understand how proteins actually work in living cells, we must keep in mind the limitations of different methods and synthesize the information obtained by all of them.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-023-01561-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins and their complexes in structures solved by X-ray crystallography or cryo-EM look rigid. While these structures yield very detailed information, they do not capture critically important property of proteins, their dynamic nature. The very fact that proteins function indicates that they must have moving parts. Structural studies have additional caveats: to obtain structures, proteins are often drastically engineered and placed into highly non-physiological conditions. In contrast to structural studies, biophysical methods, such as EPR and NMR spectroscopy, reveal protein and complex dynamics. Importantly, minimally mutated, virtually wild-type proteins can be used. Here, this issue is discussed using GPCRs and their signal transducers, G proteins and arrestins, as examples. To understand how proteins actually work in living cells, we must keep in mind the limitations of different methods and synthesize the information obtained by all of them.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.