{"title":"Research on Long-term Reliability of Silver Sintered Press-Pack IGBT Modules","authors":"Renkuan Liu, Hui Li, Ran Yao, Xiao Wang, Hongtao Tan, Wei Lai, Yue Yu, Zheyan Zhu, Bailing Zhou","doi":"10.1016/j.pedc.2022.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to the advantages of short-circuit failure mode, double-sided heat dissipation, and low thermal resistance, press-pack insulated gate bipolar transistors (PP-IGBTs) are widely used in high-power-density applications, such as high-voltage direct-current converters. As the core device of large-capacity power equipment, the reliability of a PP-IGBT is directly related to the security of the power system. In recent years, a silver-sintered package has been proposed to improve the electro-thermal performance of PP-IGBTs. However, the long-term reliability of this package has not been proven. In response to this problem, 3300-V/50-A silver-sintered PP-IGBT (SPP-IGBT) modules are used in long-reliability research. First, electro-thermal-stress finite-element models of PP-IGBTs and SPP-IGBTs were proposed and the accuracy of models verified by experiments. Through a simulation comparison, the results show that under the rated operating conditions, the on-voltage and maximum temperature of SPP-IGBTs dropped by 9.3% and 3.7%, respectively. In addition, the temperature and stress of each component were reduced, among which the surface stress of the IGBT chip emitter dropped by as much as 24.7%. Subsequently, a power-cycle test platform was established, and three PP-IGBTs and three SPP-IGBTs were tested. Finally, the experimental results were compared and analyzed, and the reasons for the sharp increase of on-voltage and metal melt were explored. The results show that the silver-sintered package improves the electrical-thermal performance and long-term reliability of the module.</p></div>","PeriodicalId":74483,"journal":{"name":"Power electronic devices and components","volume":"3 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772370422000098/pdfft?md5=aca55048c51a157d66b0a00354cfefc3&pid=1-s2.0-S2772370422000098-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power electronic devices and components","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772370422000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Owing to the advantages of short-circuit failure mode, double-sided heat dissipation, and low thermal resistance, press-pack insulated gate bipolar transistors (PP-IGBTs) are widely used in high-power-density applications, such as high-voltage direct-current converters. As the core device of large-capacity power equipment, the reliability of a PP-IGBT is directly related to the security of the power system. In recent years, a silver-sintered package has been proposed to improve the electro-thermal performance of PP-IGBTs. However, the long-term reliability of this package has not been proven. In response to this problem, 3300-V/50-A silver-sintered PP-IGBT (SPP-IGBT) modules are used in long-reliability research. First, electro-thermal-stress finite-element models of PP-IGBTs and SPP-IGBTs were proposed and the accuracy of models verified by experiments. Through a simulation comparison, the results show that under the rated operating conditions, the on-voltage and maximum temperature of SPP-IGBTs dropped by 9.3% and 3.7%, respectively. In addition, the temperature and stress of each component were reduced, among which the surface stress of the IGBT chip emitter dropped by as much as 24.7%. Subsequently, a power-cycle test platform was established, and three PP-IGBTs and three SPP-IGBTs were tested. Finally, the experimental results were compared and analyzed, and the reasons for the sharp increase of on-voltage and metal melt were explored. The results show that the silver-sintered package improves the electrical-thermal performance and long-term reliability of the module.
Power electronic devices and componentsHardware and Architecture, Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Safety, Risk, Reliability and Quality