{"title":"Scalable Hierarchically Structured Materials from a Multiscale Particle System Enabled by Microscaffolds.","authors":"Jiawei Ren, Shu Jian Chen, Yiping Qiao, Wei Wang","doi":"10.1089/3dp.2022.0313","DOIUrl":null,"url":null,"abstract":"<p><p>Structural hierarchy is the key to manufacturing multiscale particle-based composite materials. A novel manufacturing method was developed to generate scalable hierarchical structures in concrete. The new method used 3D-printed microscaffolds to interact with the multiscale particle packing in concrete, resulting in a structured lightweight composite material. The size of internal members can vary by more than two orders of magnitude, to adapt to different applications. Based on compression tests and microstructural investigation by optical microscope and quantitative nanomechanical mapping, we found that the new material is 63.93% more efficient in energy absorption capacity compared with traditional lightweight concrete. Our experimental trials also showed that introducing structural hierarchy can reduce the consumption of cementitious material in the system by up to 14% and significantly reduce the use of scaffolds. The method could be applied to a board spectrum of multiscale particle-based materials, such as dental cement and bone implant materials, to improve material performance and efficiency in medical and construction applications.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Structural hierarchy is the key to manufacturing multiscale particle-based composite materials. A novel manufacturing method was developed to generate scalable hierarchical structures in concrete. The new method used 3D-printed microscaffolds to interact with the multiscale particle packing in concrete, resulting in a structured lightweight composite material. The size of internal members can vary by more than two orders of magnitude, to adapt to different applications. Based on compression tests and microstructural investigation by optical microscope and quantitative nanomechanical mapping, we found that the new material is 63.93% more efficient in energy absorption capacity compared with traditional lightweight concrete. Our experimental trials also showed that introducing structural hierarchy can reduce the consumption of cementitious material in the system by up to 14% and significantly reduce the use of scaffolds. The method could be applied to a board spectrum of multiscale particle-based materials, such as dental cement and bone implant materials, to improve material performance and efficiency in medical and construction applications.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.