{"title":"Analysis of residue–residue interactions in the structures of ASIC1a suggests possible gating mechanisms","authors":"Vyacheslav S. Korkosh, Denis B. Tikhonov","doi":"10.1007/s00249-023-01628-1","DOIUrl":null,"url":null,"abstract":"<div><p>The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue–residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue–residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 1-2","pages":"111 - 119"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01628-1.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01628-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue–residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue–residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.