{"title":"Evaluating Close Fit in Ordinal Factor Analysis Models With Multiply Imputed Data.","authors":"Dexin Shi, Bo Zhang, Ren Liu, Zhehan Jiang","doi":"10.1177/00131644231158854","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and the root mean square error of approximation (RMSEA) to assess the fit of ordinal factor analysis models with multiply imputed data. Specifically, we described the procedure for computing the MI-based sample estimates and constructing the confidence intervals. Simulation results showed that the proposed methods could yield sufficiently accurate point and interval estimates for both SRMR and RMSEA, especially in conditions with larger sample sizes, less missing data, more response categories, and higher degrees of misfit. Based on the findings, implications and recommendations were discussed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"171-189"},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00131644231158854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and the root mean square error of approximation (RMSEA) to assess the fit of ordinal factor analysis models with multiply imputed data. Specifically, we described the procedure for computing the MI-based sample estimates and constructing the confidence intervals. Simulation results showed that the proposed methods could yield sufficiently accurate point and interval estimates for both SRMR and RMSEA, especially in conditions with larger sample sizes, less missing data, more response categories, and higher degrees of misfit. Based on the findings, implications and recommendations were discussed.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.