Molly Riley Knoedler, Julianna C. Kostas, Caroline Mary Hogan, Harper Kerkhoff, Chad M. Topaz
{"title":"An unpublished manuscript of John von Neumann on shock waves in boostered detonations: historical context and mathematical analysis","authors":"Molly Riley Knoedler, Julianna C. Kostas, Caroline Mary Hogan, Harper Kerkhoff, Chad M. Topaz","doi":"10.1007/s00407-020-00258-9","DOIUrl":null,"url":null,"abstract":"<div><p>We report on an unpublished and previously unknown manuscript of John von Neumann and contextualize it within the development of the theory of shock waves and detonations during the nineteenth and twentieth centuries. Von Neumann studies bombs comprising a primary explosive charge along with explosive booster material. His goal is to calculate the minimal amount of booster needed to create a sustainable detonation, presumably because booster material is often more expensive and more volatile. In service of this goal, he formulates and analyzes a partial differential equation-based model describing a moving shock wave at the interface of detonated and undetonated material. We provide a complete transcription of von Neumann’s work and give our own accompanying explanations and analyses, including the correction of two small errors in his calculations. Today, detonations are typically modeled using a combination of experimental results and numerical simulations particular to the shape and materials of the explosive, as the complex three dimensional dynamics of detonations are analytically intractable. Although von Neumann’s manuscript will not revolutionize our modern understanding of detonations, the document is a valuable historical record of the state of hydrodynamics research during and after World War II.\n</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"75 1","pages":"83 - 108"},"PeriodicalIF":0.7000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00407-020-00258-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-020-00258-9","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We report on an unpublished and previously unknown manuscript of John von Neumann and contextualize it within the development of the theory of shock waves and detonations during the nineteenth and twentieth centuries. Von Neumann studies bombs comprising a primary explosive charge along with explosive booster material. His goal is to calculate the minimal amount of booster needed to create a sustainable detonation, presumably because booster material is often more expensive and more volatile. In service of this goal, he formulates and analyzes a partial differential equation-based model describing a moving shock wave at the interface of detonated and undetonated material. We provide a complete transcription of von Neumann’s work and give our own accompanying explanations and analyses, including the correction of two small errors in his calculations. Today, detonations are typically modeled using a combination of experimental results and numerical simulations particular to the shape and materials of the explosive, as the complex three dimensional dynamics of detonations are analytically intractable. Although von Neumann’s manuscript will not revolutionize our modern understanding of detonations, the document is a valuable historical record of the state of hydrodynamics research during and after World War II.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.