Kerstin Dittmann, Steffen Czink, Stefan Dietrich, Anna Trauth, Kay André Weidenmann
{"title":"Laser-Based Additive Manufacturing and Characterization of an Open-Porous Ni-Based Metallic Glass Lattice Structure (Ni<sub>60</sub>Nb<sub>20</sub>Ta<sub>20</sub>).","authors":"Kerstin Dittmann, Steffen Czink, Stefan Dietrich, Anna Trauth, Kay André Weidenmann","doi":"10.1089/3dp.2022.0118","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their amorphous structure, metallic glasses exhibit remarkable properties such as high strength, hardness, and elastic strain limit. Conversely, they also exhibit high susceptibility to brittle fracture, making them less qualified for the use as monolithic structural components. Therefore, they may be preferably used as the reinforcing phase in hybrid materials combined with ductile matrix materials. Especially metal matrix composites with interpenetrating structures are suitable. This requires an open-porous structure of the metallic glass. In the study at hand, an open-porous lattice structure was manufactured from metallic glass powder (Ni<sub>60</sub>Nb<sub>20</sub>Ta<sub>20</sub>) by laser powder bed fusion. A parameter study was carried out with various scanning strategies to manufacture a mechanically stable lattice structure while maintaining the amorphous structure of the metallic glass. Thus, X-ray diffraction measurements were conducted to validate the parameter study. A stable lattice structure with a largely amorphous structure was successfully achieved with a scanning strategy of single scanned lines and a rotation of 90° for each layer. However, nanocrystallization of 7% occurred in the heat-affected zones formed between the individual printed layers during reheating. Conducting compression tests, a compressive modulus of 18 GPa and a maximum strength of 90 MPa in 0°-direction were achieved. In 90°-direction, no compressive modulus could be determined but compressive strength resulted in 15 MPa. Performing nanoindentation with a Young's modulus of 195.1 GPa and Vickers hardness of HV<sub>IT</sub> = 956.1 was achieved for the printed bulk metallic glass alloy. The resulting lattice structure was further characterized by differential scanning calorimetry for thermal behavior.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"e537-e547"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their amorphous structure, metallic glasses exhibit remarkable properties such as high strength, hardness, and elastic strain limit. Conversely, they also exhibit high susceptibility to brittle fracture, making them less qualified for the use as monolithic structural components. Therefore, they may be preferably used as the reinforcing phase in hybrid materials combined with ductile matrix materials. Especially metal matrix composites with interpenetrating structures are suitable. This requires an open-porous structure of the metallic glass. In the study at hand, an open-porous lattice structure was manufactured from metallic glass powder (Ni60Nb20Ta20) by laser powder bed fusion. A parameter study was carried out with various scanning strategies to manufacture a mechanically stable lattice structure while maintaining the amorphous structure of the metallic glass. Thus, X-ray diffraction measurements were conducted to validate the parameter study. A stable lattice structure with a largely amorphous structure was successfully achieved with a scanning strategy of single scanned lines and a rotation of 90° for each layer. However, nanocrystallization of 7% occurred in the heat-affected zones formed between the individual printed layers during reheating. Conducting compression tests, a compressive modulus of 18 GPa and a maximum strength of 90 MPa in 0°-direction were achieved. In 90°-direction, no compressive modulus could be determined but compressive strength resulted in 15 MPa. Performing nanoindentation with a Young's modulus of 195.1 GPa and Vickers hardness of HVIT = 956.1 was achieved for the printed bulk metallic glass alloy. The resulting lattice structure was further characterized by differential scanning calorimetry for thermal behavior.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.