Antonio Carlos Alcázar-Blanco , Jessica Paule-Vianez , Miguel Prado-Román , José Luis Coca-Pérez
{"title":"Generalized regression neuronal networks to predict the value of numismatic assets. Evidence for the walking liberty half dollar","authors":"Antonio Carlos Alcázar-Blanco , Jessica Paule-Vianez , Miguel Prado-Román , José Luis Coca-Pérez","doi":"10.1016/j.iedeen.2021.100167","DOIUrl":null,"url":null,"abstract":"<div><p>Unstable fluctuations in financial markets caused by the 2008 financial crisis and currently by the Covid-19 crisis have generated greater concern among investors regarding their capital protection. In view of this situation, the consideration of alternative investments has taken a relevant position to protect their wealth and obtain profits. Due to the relevance of these investments in these times, this study proposes using artificial intelligence to predict the value of alternative investments, specifically the numismatic asset the Walking Liberty Half Dollar. To achieve this objective, the use of Generalized Regression Neural Networks has been proposed over a sample 25 coins of the Walking Liberty Half Dollar with several qualities valued in the period 2000-2019. Two models were proposed, one for the entire selected sample and the other one for each type of coin depending on its year of minting. Thus, it has been found that the model proposed for the entire sample has a success rate of between 86.12% and 97% while the approach for each type of coin obtained success rates that even reach 100%. The variables that have the greatest influence within the model are the state of conservation of the coin, its age, and its exclusivity. In this way, these results provide fundamental information to investors to understand the behaviour of these assets, and to be able to formulate more profitable investment portfolios, especially in times of great economic instability.</p></div>","PeriodicalId":45796,"journal":{"name":"European Research on Management and Business Economics","volume":"27 3","pages":"Article 100167"},"PeriodicalIF":7.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.iedeen.2021.100167","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Research on Management and Business Economics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2444883421000267","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 4
Abstract
Unstable fluctuations in financial markets caused by the 2008 financial crisis and currently by the Covid-19 crisis have generated greater concern among investors regarding their capital protection. In view of this situation, the consideration of alternative investments has taken a relevant position to protect their wealth and obtain profits. Due to the relevance of these investments in these times, this study proposes using artificial intelligence to predict the value of alternative investments, specifically the numismatic asset the Walking Liberty Half Dollar. To achieve this objective, the use of Generalized Regression Neural Networks has been proposed over a sample 25 coins of the Walking Liberty Half Dollar with several qualities valued in the period 2000-2019. Two models were proposed, one for the entire selected sample and the other one for each type of coin depending on its year of minting. Thus, it has been found that the model proposed for the entire sample has a success rate of between 86.12% and 97% while the approach for each type of coin obtained success rates that even reach 100%. The variables that have the greatest influence within the model are the state of conservation of the coin, its age, and its exclusivity. In this way, these results provide fundamental information to investors to understand the behaviour of these assets, and to be able to formulate more profitable investment portfolios, especially in times of great economic instability.
期刊介绍:
European Research on Management and Business Economics (ERMBE) was born in 1995 as Investigaciones Europeas de Dirección y Economía de la Empresa (IEDEE). The journal is published by the European Academy of Management and Business Economics (AEDEM) under this new title since 2016, it was indexed in SCOPUS in 2012 and in Thomson Reuters Emerging Sources Citation Index in 2015. From the beginning, the aim of the Journal is to foster academic research by publishing original research articles that meet the highest analytical standards, and provide new insights that contribute and spread the business management knowledge