Ultrasound-Promoted Nanoreagent for Homologous Targeted Synergistic Chemodynamic/Sonodynamic Tumor Therapy

IF 2.9 4区 医学 Q1 Medicine
Huiying Zuo, Hui Fang Xiao, Deqiang Wang, Ranran Wang
{"title":"Ultrasound-Promoted Nanoreagent for Homologous Targeted Synergistic Chemodynamic/Sonodynamic Tumor Therapy","authors":"Huiying Zuo, Hui Fang Xiao, Deqiang Wang, Ranran Wang","doi":"10.1166/jbn.2023.3655","DOIUrl":null,"url":null,"abstract":"The establishment of a tumor theranostic platform with high efficacy is attracting considerable interest in cancer treatment. Nevertheless, considerable obstacles need to be overcome in developing such a platform. In this study, a versatile theranostic system (CM-FMNPs-Cur) was produced\n utilizing MnO2 nanoflowers, which provided targeted and synergistic therapy for cancer through the incorporation of sonodynamic and chemodynamic therapies. By integrating Fe3O4, MnO2, and curcumin, CM-FMNPs-Cur manifests a substantial amount of reactive\n oxygen species toward deep-seated cancers. As a sonosensitizer, curcumin was used for chemodynamic therapy (CDT)_and sonodynamic therapy (SDT). In the acidic environment of malignant cells, CM-FMNPs-Cur can decompose into Mn2+ and Fe2+, triggering a Fenton-like reaction\n and generating ·OH radicals and oxygen. Ameliorating tumor hypoxia also enhanced the effectiveness of SDT in neoplasms. The homologous targeting effect of CM-FMNPs-Cur on cancer cell membranes led to its accumulation in the tumor region. Here, the mutual promotion of CDT and SDT resulted\n in an amplified therapeutic outcome. All these results revealed the vast potential of CM-FMNPs-Cur for secure and highly effective collaborative tumor treatment, indicating future clinical applications.","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2023.3655","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The establishment of a tumor theranostic platform with high efficacy is attracting considerable interest in cancer treatment. Nevertheless, considerable obstacles need to be overcome in developing such a platform. In this study, a versatile theranostic system (CM-FMNPs-Cur) was produced utilizing MnO2 nanoflowers, which provided targeted and synergistic therapy for cancer through the incorporation of sonodynamic and chemodynamic therapies. By integrating Fe3O4, MnO2, and curcumin, CM-FMNPs-Cur manifests a substantial amount of reactive oxygen species toward deep-seated cancers. As a sonosensitizer, curcumin was used for chemodynamic therapy (CDT)_and sonodynamic therapy (SDT). In the acidic environment of malignant cells, CM-FMNPs-Cur can decompose into Mn2+ and Fe2+, triggering a Fenton-like reaction and generating ·OH radicals and oxygen. Ameliorating tumor hypoxia also enhanced the effectiveness of SDT in neoplasms. The homologous targeting effect of CM-FMNPs-Cur on cancer cell membranes led to its accumulation in the tumor region. Here, the mutual promotion of CDT and SDT resulted in an amplified therapeutic outcome. All these results revealed the vast potential of CM-FMNPs-Cur for secure and highly effective collaborative tumor treatment, indicating future clinical applications.
超声促进纳米试剂用于同源靶向协同化疗/声动力肿瘤治疗
建立高效的肿瘤治疗平台在癌症治疗中引起了相当大的兴趣。然而,在开发这样一个平台方面,需要克服相当大的障碍。在本研究中,利用MnO2纳米花生产了一种多功能治疗系统(CM-FMNPs-Cur),该系统通过结合声动力学和化学动力学疗法为癌症提供靶向和协同治疗。通过整合Fe3O4、MnO2和姜黄素,CM FMNPs Cur对深层癌症表现出大量的活性氧。姜黄素作为一种声敏剂被用于化学动力学治疗(CDT)和声动力学治疗(SDT)。在恶性细胞的酸性环境中,CM-FMNPs-Cur可以分解成Mn2+和Fe2+,引发类Fenton反应,产生·OH自由基和氧气。改善肿瘤缺氧也增强了SDT在肿瘤中的有效性。CM-FMNPs-Cur对癌症细胞膜的同源靶向作用导致其在肿瘤区域的积聚。在这里,CDT和SDT的相互促进导致了放大的治疗结果。所有这些结果都揭示了CM FMNPs Cur在安全高效的协同肿瘤治疗中的巨大潜力,预示着未来的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
17.20%
发文量
145
审稿时长
2.3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信