Metric Lie groups admitting dilations

Pub Date : 2019-01-08 DOI:10.4310/ARKIV.2021.V59.N1.A5
E. Donne, Sebastiano Golo
{"title":"Metric Lie groups admitting dilations","authors":"E. Donne, Sebastiano Golo","doi":"10.4310/ARKIV.2021.V59.N1.A5","DOIUrl":null,"url":null,"abstract":"We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \\infty)\\rightarrow\\mathtt{Aut}(G)$, $\\lambda\\mapsto\\delta_\\lambda$, so that $ d(\\delta_\\lambda x,\\delta_\\lambda y) = \\lambda d(x,y)$, for all $x,y\\in G$ and all $\\lambda>0$. \nFirst, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. \nThird, we show that an admissible left-invariant distance on a Lie group with at least one nontrivial dilating automorphism is biLipschitz equivalent to one that admits a one-parameter group of dilating automorphisms. Moreover, the infinitesimal generator can be chosen to have spectrum in $[1,\\infty)$. Fourth, we characterize the automorphisms of a Lie group that are a dilating automorphisms for some admissible distance. \nFinally, we characterize metric Lie groups admitting a one-parameter group of dilating automorphisms as the only locally compact, isometrically homogeneous metric spaces with metric dilations of all factors. Such metric spaces appear as tangents of doubling metric spaces with unique tangents.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2021.V59.N1.A5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \infty)\rightarrow\mathtt{Aut}(G)$, $\lambda\mapsto\delta_\lambda$, so that $ d(\delta_\lambda x,\delta_\lambda y) = \lambda d(x,y)$, for all $x,y\in G$ and all $\lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. Third, we show that an admissible left-invariant distance on a Lie group with at least one nontrivial dilating automorphism is biLipschitz equivalent to one that admits a one-parameter group of dilating automorphisms. Moreover, the infinitesimal generator can be chosen to have spectrum in $[1,\infty)$. Fourth, we characterize the automorphisms of a Lie group that are a dilating automorphisms for some admissible distance. Finally, we characterize metric Lie groups admitting a one-parameter group of dilating automorphisms as the only locally compact, isometrically homogeneous metric spaces with metric dilations of all factors. Such metric spaces appear as tangents of doubling metric spaces with unique tangents.
分享
查看原文
容许扩张的度量李群
我们考虑李群$G$上的左不变距离$d$,其性质是存在李自同构$(0,\infty)\rightarrow\mathtt{Aut}(G)$,$\lambda \mapsto\delta_\lambda$的乘法单参数群,使得对于G$中的所有$x,y\和所有$\lamba>0$,$d(\delta-\lambda x,\deltaon\lambda y)=\lambda d(x,y)$。首先,我们证明了所有这些距离都是可容许的,也就是说,它们诱导了流形拓扑。其次,利用李自同构的无穷小生成元的代数性质,刻画了李自同构在某个左不变距离上的扩张的乘性单参数群。第三,我们证明了具有至少一个非平凡扩张自同构的李群上的可容许左不变距离是biLipschitz等价于允许一个扩张自同构单参数群的李群。此外无穷小生成器可以选择在$[1,\infty)$。第四,我们刻画了一个李群的自同构,它是一个在一定容许距离上扩张的自同构。最后,我们把容许扩张自同构的单参数群的度量李群刻画为唯一具有所有因子的度量扩张的局部紧等距齐次度量空间。这样的度量空间表现为加倍度量的切线具有唯一切线的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信