Jinah Yun, Jinwon Kim, Minwoo Choi, Hee-Wook Choi, Yeon-Hee Kim, Sang-Sam Lee
{"title":"Improvement of Korea Meteorological Administration Solar Energy Resources Map Using Fine-Scale Terrain Data","authors":"Jinah Yun, Jinwon Kim, Minwoo Choi, Hee-Wook Choi, Yeon-Hee Kim, Sang-Sam Lee","doi":"10.1007/s13143-022-00312-2","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time solar energy resources mapping is crucial for the development and management of solar power facilities. This study analyzes the effects of the digital elevation model (DEM) resolution on the accuracy of the surface insolation (insolation hereafter) calculated by the Korea Meteorological Administration solar energy mapping system, KMAP-Solar, using two DEMs of different resolutions, 1.5 km and 100 m. It is found that KMAP-Solar yields smaller land-mean insolation with the fine-scale DEM than the coarse-scale DEM. The fine-scale DEM reduces biases by as much as 32 Wm<sup>− 2</sup> for all observation sites, especially those in complex terrain and that the insolation error reduction is correlated with the difference in sky view factor (SVF) between the coarse- and fine-scale DEM. Both the coarse- and fine-scale DEMs generate the insolation-elevation and insolation-SVF relationship which is characterized by positive (negative) correlation between the insolation and the terrain altitude (SVF). However, the coarse-scale DEM substantially underestimates these relationships compared to the fine-scale DEM, mainly because the coarse-scale DEM underrepresents large terrain slopes and/or small SVFs, most seriously in high-altitude regions. The fine-scale DEM generates a more realistic insolation distribution than the coarse-scale DEM by incorporating a wider range of key terrain parameters involved in determining insolation. Improvements of insolation calculations in KMAP-Solar using a fine-scale DEM, especially in the areas of complex terrain, is of a practical value for Korea because the operational solar resources map from KMAP-Solar supports solar energy research, solar power plant installations, and real-time prediction and management of solar power within the power grid.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 3","pages":"297 - 309"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-022-00312-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-022-00312-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time solar energy resources mapping is crucial for the development and management of solar power facilities. This study analyzes the effects of the digital elevation model (DEM) resolution on the accuracy of the surface insolation (insolation hereafter) calculated by the Korea Meteorological Administration solar energy mapping system, KMAP-Solar, using two DEMs of different resolutions, 1.5 km and 100 m. It is found that KMAP-Solar yields smaller land-mean insolation with the fine-scale DEM than the coarse-scale DEM. The fine-scale DEM reduces biases by as much as 32 Wm− 2 for all observation sites, especially those in complex terrain and that the insolation error reduction is correlated with the difference in sky view factor (SVF) between the coarse- and fine-scale DEM. Both the coarse- and fine-scale DEMs generate the insolation-elevation and insolation-SVF relationship which is characterized by positive (negative) correlation between the insolation and the terrain altitude (SVF). However, the coarse-scale DEM substantially underestimates these relationships compared to the fine-scale DEM, mainly because the coarse-scale DEM underrepresents large terrain slopes and/or small SVFs, most seriously in high-altitude regions. The fine-scale DEM generates a more realistic insolation distribution than the coarse-scale DEM by incorporating a wider range of key terrain parameters involved in determining insolation. Improvements of insolation calculations in KMAP-Solar using a fine-scale DEM, especially in the areas of complex terrain, is of a practical value for Korea because the operational solar resources map from KMAP-Solar supports solar energy research, solar power plant installations, and real-time prediction and management of solar power within the power grid.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.