G. G. de Lima, B. Aggio, M. Matos, T. A. M. D. de Lima, B. Pereira, A. C. Pedro, W. L. Magalhães
{"title":"Cryoslash as an effective pre-treatment to obtain nanofibrillated cellulose using ultra-fine friction grinder with kraft pulp","authors":"G. G. de Lima, B. Aggio, M. Matos, T. A. M. D. de Lima, B. Pereira, A. C. Pedro, W. L. Magalhães","doi":"10.1515/npprj-2022-0091","DOIUrl":null,"url":null,"abstract":"Abstract Approaches to obtain nanocellulose have been extensively suggested, and among the most competitive methodologies includes mechanical defibrillation, which results in a nanocellulose gel suspension that can be used in a variety of applications. However, standard procedures results in inhomogeneous fibre sizes due to its physical approach. Pre-treatments have been suggested, such as enzymes, but their cost is a disadvantage. In this work, we suggest the use of cryoslash for bleach kraft pulp using a simple methodology of embedding the dry kraft pulp in distilled water following by freezing at −80 °C, which was slashed using a common blender and submitted to an ultra-fine friction grinder. Samples were studied at various grinding steps 5, 15, 30, 60 and 120. Overall, the energy difference required to defibrillate with cryoslash was ∼3.26 kWh/kg at 30 steps and ∼6 at 120 steps, which was similar to enzymatic pre-treatment with nanofibrils significantly smaller. Cryoslash presented a unique C–H in plane structure from nanocellulose, related to a decrease in average size of fibrils, while crystallinity and thermal properties of nanocellulose remained stable at 60 steps, but mechanical properties increased until 120 steps along with the transmittance values related to the energy consumption curve.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"38 1","pages":"333 - 341"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0091","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Approaches to obtain nanocellulose have been extensively suggested, and among the most competitive methodologies includes mechanical defibrillation, which results in a nanocellulose gel suspension that can be used in a variety of applications. However, standard procedures results in inhomogeneous fibre sizes due to its physical approach. Pre-treatments have been suggested, such as enzymes, but their cost is a disadvantage. In this work, we suggest the use of cryoslash for bleach kraft pulp using a simple methodology of embedding the dry kraft pulp in distilled water following by freezing at −80 °C, which was slashed using a common blender and submitted to an ultra-fine friction grinder. Samples were studied at various grinding steps 5, 15, 30, 60 and 120. Overall, the energy difference required to defibrillate with cryoslash was ∼3.26 kWh/kg at 30 steps and ∼6 at 120 steps, which was similar to enzymatic pre-treatment with nanofibrils significantly smaller. Cryoslash presented a unique C–H in plane structure from nanocellulose, related to a decrease in average size of fibrils, while crystallinity and thermal properties of nanocellulose remained stable at 60 steps, but mechanical properties increased until 120 steps along with the transmittance values related to the energy consumption curve.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.